Ethosome-Based Transdermal Drug Delivery: Its Structural Components, Preparation Techniques, and Therapeutic Applications Across Metabolic, Chronic, and Oncological Conditions.
{"title":"Ethosome-Based Transdermal Drug Delivery: Its Structural Components, Preparation Techniques, and Therapeutic Applications Across Metabolic, Chronic, and Oncological Conditions.","authors":"Rashed M Almuqbil, Bandar Aldhubiab","doi":"10.3390/pharmaceutics17050583","DOIUrl":null,"url":null,"abstract":"<p><p>Transdermal drug delivery systems (TDDSs) provide a non-invasive alternative to oral and parenteral routes, delivering drugs into the bloodstream while avoiding gastrointestinal degradation and first-pass metabolism. Despite benefits like enhanced bioavailability and patient compliance, the stratum corneum limits drug permeation. Ethosomes overcome the stratum corneum barrier with superior flexibility and permeability compared to liposomes. Ethanol disrupts the skin's lipid bilayer, enabling deep penetration and efficient drug delivery. Ethosomes offer high entrapment efficiency and stability, delivering both hydrophilic and lipophilic drugs. However, challenges like stability optimization and clinical translation persist. This review examines the structural components, preparation methods, and therapeutic applications of ethosomes in metabolic and chronic diseases, including diabetes, cardiovascular diseases, neurodegenerative disorders, arthritis, and cancers. Moreover, it highlights the potential of ethosomes to revolutionize TDDSs for managing chronic and metabolic diseases, providing a foundation for further research and clinical development.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 5","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17050583","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Transdermal drug delivery systems (TDDSs) provide a non-invasive alternative to oral and parenteral routes, delivering drugs into the bloodstream while avoiding gastrointestinal degradation and first-pass metabolism. Despite benefits like enhanced bioavailability and patient compliance, the stratum corneum limits drug permeation. Ethosomes overcome the stratum corneum barrier with superior flexibility and permeability compared to liposomes. Ethanol disrupts the skin's lipid bilayer, enabling deep penetration and efficient drug delivery. Ethosomes offer high entrapment efficiency and stability, delivering both hydrophilic and lipophilic drugs. However, challenges like stability optimization and clinical translation persist. This review examines the structural components, preparation methods, and therapeutic applications of ethosomes in metabolic and chronic diseases, including diabetes, cardiovascular diseases, neurodegenerative disorders, arthritis, and cancers. Moreover, it highlights the potential of ethosomes to revolutionize TDDSs for managing chronic and metabolic diseases, providing a foundation for further research and clinical development.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.