Pressure Sensitivity of UiO-66 Framework with Encapsulated Spin Probe: A Molecular Dynamics Study.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dmitry V Alimov, Artem S Poryvaev, Matvey V Fedin
{"title":"Pressure Sensitivity of UiO-66 Framework with Encapsulated Spin Probe: A Molecular Dynamics Study.","authors":"Dmitry V Alimov, Artem S Poryvaev, Matvey V Fedin","doi":"10.3390/molecules30102247","DOIUrl":null,"url":null,"abstract":"<p><p>Probes sensitive to mechanical stress are in high demand for analyzing pressure distributions in materials. Metal-organic frameworks (MOFs) are especially promising for designing pressure sensors due to their structural tunability. In this work, using classical molecular dynamics (MD) simulations, we clarified the mechanism of exceptional pressure sensitivity of the material based on the UiO-66 framework with a trace amount of spin probes encapsulated in cavities. The role of defects in the MOF structure has been revealed using a combination of electron paramagnetic resonance (EPR) spectroscopy and MD calculations, and potential degradation pathways under mechanical stress have been proposed. The combined MD and EPR study provides valuable insights for further development of new MOF-based sensors applicable for non-destructive pressure mapping in various materials.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 10","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30102247","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Probes sensitive to mechanical stress are in high demand for analyzing pressure distributions in materials. Metal-organic frameworks (MOFs) are especially promising for designing pressure sensors due to their structural tunability. In this work, using classical molecular dynamics (MD) simulations, we clarified the mechanism of exceptional pressure sensitivity of the material based on the UiO-66 framework with a trace amount of spin probes encapsulated in cavities. The role of defects in the MOF structure has been revealed using a combination of electron paramagnetic resonance (EPR) spectroscopy and MD calculations, and potential degradation pathways under mechanical stress have been proposed. The combined MD and EPR study provides valuable insights for further development of new MOF-based sensors applicable for non-destructive pressure mapping in various materials.

包裹自旋探针的UiO-66框架的压力敏感性:分子动力学研究。
对机械应力敏感的探针在分析材料中的压力分布方面有很高的需求。金属有机框架(MOFs)由于其结构的可调性,在设计压力传感器方面尤其有前景。在这项工作中,我们利用经典分子动力学(MD)模拟,阐明了基于UiO-66框架的材料的异常压敏机制,并在空腔中封装了微量自旋探针。利用电子顺磁共振(EPR)谱和MD计算相结合的方法揭示了缺陷在MOF结构中的作用,并提出了机械应力下的潜在降解途径。MD和EPR的结合研究为进一步开发适用于各种材料的无损压力测绘的新型mof传感器提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信