Mingyue Li, Zhaofeng Qiu, Tianci Li, Yi Kang, Shan Lu, Xiarong Hu
{"title":"1200V 4H-SiC MOSFET with a High-K Source Gate for Improving Third-Quadrant and High Frequency Figure of Merit Performance.","authors":"Mingyue Li, Zhaofeng Qiu, Tianci Li, Yi Kang, Shan Lu, Xiarong Hu","doi":"10.3390/mi16050508","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a 1200V 4H-SiC MOSFET incorporating a High-K dielectric-integrated fused source-gate (HKSG) structure, engineered to concurrently enhance the third-quadrant operation and high-frequency figure of merit (HF-FOM). The High-K dielectric enhances the electric field effect, reducing the threshold voltage of the source-gate. As a result, the reverse conduction voltage drops from 2.79 V (body diode) to 1.53 V, and the bipolar degradation is eliminated. Moreover, by incorporating a shielding area within the merged source-gate architecture, the gate-to-drain capacitance <i>C</i><sub>gd</sub> of the HKSG-MOS is reduced. The simulation results show that the HF-FOM <i>C</i><sub>gd</sub> × <i>R</i><sub>on,sp</sub> and <i>Q</i><sub>gd</sub> × <i>R</i><sub>on,sp</sub> of the HKSG-MOS are decreased by 48.1% and 58.9%, respectively, compared with that of conventional SiC MOSFET. The improved performances make the proposed SiC MOSFEET have great potential in high-frequency power applications.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16050508","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a 1200V 4H-SiC MOSFET incorporating a High-K dielectric-integrated fused source-gate (HKSG) structure, engineered to concurrently enhance the third-quadrant operation and high-frequency figure of merit (HF-FOM). The High-K dielectric enhances the electric field effect, reducing the threshold voltage of the source-gate. As a result, the reverse conduction voltage drops from 2.79 V (body diode) to 1.53 V, and the bipolar degradation is eliminated. Moreover, by incorporating a shielding area within the merged source-gate architecture, the gate-to-drain capacitance Cgd of the HKSG-MOS is reduced. The simulation results show that the HF-FOM Cgd × Ron,sp and Qgd × Ron,sp of the HKSG-MOS are decreased by 48.1% and 58.9%, respectively, compared with that of conventional SiC MOSFET. The improved performances make the proposed SiC MOSFEET have great potential in high-frequency power applications.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.