Startup Drift Compensation of MEMS INS Based on PSO-GRNN Network.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-04-29 DOI:10.3390/mi16050524
Songlai Han, Jingyi Xie, Jing Dong
{"title":"Startup Drift Compensation of MEMS INS Based on PSO-GRNN Network.","authors":"Songlai Han, Jingyi Xie, Jing Dong","doi":"10.3390/mi16050524","DOIUrl":null,"url":null,"abstract":"<p><p>The startup drift phenomenon that exists in MEMS INSs increases the navigation error, prolonging the start-up time. Aiming to resolve this problem, a startup drift compensation method based on a PSO-GRNN model is proposed in this paper. We adopted a correlation analysis to determine the input parameters of the PSO-GRNN model that mainly affect startup drift. In the process of training this model, we used the PSO algorithm to optimize the spread parameter of the PSO-GRNN model. The information transmission function between particle swarms was used to find the best spread parameter by iterative optimization, the particle's position was mapped to the GRNN model, and the GRNN model was constructed with the optimal position of the swarm as the spread parameter. This method can effectively compensate for startup drift and improve navigation accuracy. Startup drift compensation experiments were carried out at different ambient temperatures. Compared with the MEMS INS data without compensation, the standard deviation of the MEMS INS data with the proposed method decreased by more than 80.6%, and the peak-to-peak value of the MEMS INS data decreased by over 72.7%. Compared with the traditional method, the standard deviation of the MEMS INS data compensated via this method decreased by 54.5% on average, and the peak-to-peak value decreased by 42.8% on average. Meanwhile, the performance of this method was verified by navigation experiments. With the proposed method, the speed error improved by over 36.4%, and the position error improved by over 41.1%. The above experiments verified that the method of this paper significantly improved navigation performance.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114331/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16050524","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The startup drift phenomenon that exists in MEMS INSs increases the navigation error, prolonging the start-up time. Aiming to resolve this problem, a startup drift compensation method based on a PSO-GRNN model is proposed in this paper. We adopted a correlation analysis to determine the input parameters of the PSO-GRNN model that mainly affect startup drift. In the process of training this model, we used the PSO algorithm to optimize the spread parameter of the PSO-GRNN model. The information transmission function between particle swarms was used to find the best spread parameter by iterative optimization, the particle's position was mapped to the GRNN model, and the GRNN model was constructed with the optimal position of the swarm as the spread parameter. This method can effectively compensate for startup drift and improve navigation accuracy. Startup drift compensation experiments were carried out at different ambient temperatures. Compared with the MEMS INS data without compensation, the standard deviation of the MEMS INS data with the proposed method decreased by more than 80.6%, and the peak-to-peak value of the MEMS INS data decreased by over 72.7%. Compared with the traditional method, the standard deviation of the MEMS INS data compensated via this method decreased by 54.5% on average, and the peak-to-peak value decreased by 42.8% on average. Meanwhile, the performance of this method was verified by navigation experiments. With the proposed method, the speed error improved by over 36.4%, and the position error improved by over 41.1%. The above experiments verified that the method of this paper significantly improved navigation performance.

基于PSO-GRNN网络的MEMS INS启动漂移补偿。
MEMS集成电路中存在的启动漂移现象增加了导航误差,延长了启动时间。针对这一问题,本文提出了一种基于PSO-GRNN模型的启动漂移补偿方法。我们通过相关性分析确定了PSO-GRNN模型中主要影响启动漂移的输入参数。在该模型的训练过程中,我们使用PSO算法对PSO- grnn模型的扩散参数进行优化。利用粒子群之间的信息传递函数,通过迭代优化找到最佳传播参数,将粒子群的位置映射到GRNN模型中,并以最优位置作为传播参数构建GRNN模型。该方法能有效补偿启动漂移,提高导航精度。在不同的环境温度下进行了启动漂移补偿实验。与未进行补偿的MEMS INS数据相比,采用该方法得到的MEMS INS数据的标准差降低了80.6%以上,峰间值降低了72.7%以上。与传统方法相比,该方法补偿的MEMS INS数据标准差平均降低54.5%,峰间值平均降低42.8%。同时,通过导航实验验证了该方法的有效性。采用该方法,速度误差提高了36.4%以上,位置误差提高了41.1%以上。以上实验验证了本文方法显著提高了导航性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信