Roxana Guadalupe Tamayo-Castañeda, Gloria Viviana Cerrillo-Rojas, Teodoro Ibarra-Pérez, Christophe Ndjatchi, Hans Christian Correa-Aguado
{"title":"A Push-Pull Strategy to Enhance Biomass and Lipid Production in <i>Nannochloropsis oculata</i>.","authors":"Roxana Guadalupe Tamayo-Castañeda, Gloria Viviana Cerrillo-Rojas, Teodoro Ibarra-Pérez, Christophe Ndjatchi, Hans Christian Correa-Aguado","doi":"10.3390/microorganisms13051131","DOIUrl":null,"url":null,"abstract":"<p><p>The high demand for sustainable biodiesel feedstocks has led to the exploration of innovative strategies to enhance lipid productivity in microalgae. This study introduces a push-pull strategy to optimize lipid accumulation in <i>Nannochloropsis oculata</i>. The benzyl amino purine (BAP) and naphthalene acetic acid (NAA) stimulation, acting as the 'push' component, significantly boost growth and nutrient stress tolerance. Meanwhile, the 'pull' component, nitrogen (N) deficiency, triggers lipid biosynthesis. A Box-Behnken design was employed to optimize the factors named BAP fraction (0-1), total phytohormone (PH) BAP/NAA mix dose (0-20 ppm), and N-concentration (0-50%). The combined BAP/NAA treatment significantly increased biomass (15% higher than the control) and mitigated N-stress with higher doses (20 ppm). Lipid yield surged from 12.4% to 38.87% under optimized conditions (23.25% N, 39.5 ppm NAA, and BAP fraction 0). The push-pull strategy contributed to boosting lipid synthesis and balancing biomass production. N-limitation and total PH dosage were the determining factors in this strategy. This work demonstrates the potential of the push-pull strategy in increasing lipid accumulation, offering a promising and optimistic solution for biodiesel production at scale from microalgae. By reducing dependence on fossil fuels, <i>N. oculata</i> emerges as a reliable feedstock for oil extraction and biodiesel.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 5","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13051131","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The high demand for sustainable biodiesel feedstocks has led to the exploration of innovative strategies to enhance lipid productivity in microalgae. This study introduces a push-pull strategy to optimize lipid accumulation in Nannochloropsis oculata. The benzyl amino purine (BAP) and naphthalene acetic acid (NAA) stimulation, acting as the 'push' component, significantly boost growth and nutrient stress tolerance. Meanwhile, the 'pull' component, nitrogen (N) deficiency, triggers lipid biosynthesis. A Box-Behnken design was employed to optimize the factors named BAP fraction (0-1), total phytohormone (PH) BAP/NAA mix dose (0-20 ppm), and N-concentration (0-50%). The combined BAP/NAA treatment significantly increased biomass (15% higher than the control) and mitigated N-stress with higher doses (20 ppm). Lipid yield surged from 12.4% to 38.87% under optimized conditions (23.25% N, 39.5 ppm NAA, and BAP fraction 0). The push-pull strategy contributed to boosting lipid synthesis and balancing biomass production. N-limitation and total PH dosage were the determining factors in this strategy. This work demonstrates the potential of the push-pull strategy in increasing lipid accumulation, offering a promising and optimistic solution for biodiesel production at scale from microalgae. By reducing dependence on fossil fuels, N. oculata emerges as a reliable feedstock for oil extraction and biodiesel.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.