Optimizing the Manufacturing Process Control of Si-Based Soft Magnetic Composites.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-05-16 DOI:10.3390/ma18102321
Seongsu Kang, Seonbong Lee
{"title":"Optimizing the Manufacturing Process Control of Si-Based Soft Magnetic Composites.","authors":"Seongsu Kang, Seonbong Lee","doi":"10.3390/ma18102321","DOIUrl":null,"url":null,"abstract":"<p><p>This study attempts to enhance the formability and electromagnetic properties of Fe-Si-based soft magnetic composites via process parameter optimization. Two silicon compositions (5.0 and 6.5 wt.%) were examined to determine their influence on density, internal stress, microstructure stability, and magnetic properties using a factorial design comprising 96 different condition combinations. A Pearson correlation analysis revealed a negative relationship between Si content and formability, while magnetic permeability increased with higher Si content. The 5.0 wt.% Si samples exhibited superior density (7.42 g/cm<sup>3</sup> vs. 7.28 g/cm<sup>3</sup>), uniform microstructure, and coating stability. Conversely, the 6.5 wt.% Si samples achieved better permeability (126 at 10 kHz) than 5.0 wt.% Si samples but exhibited higher internal stress, uneven compaction, and thicker insulation layers (~400 nm vs. <10 nm). Scanning electron microscopy and transmission electron microscopy analyses identified necking and damage to the insulation layer. X-ray diffraction verified the stability of the Fe<sub>1.6</sub>Si<sub>0.4</sub> phase after the forming and annealing processes. Secondary molding temperature exhibited the most significant impact on densification, and annealing generally degraded the quality factor (Q-factor). The highest Q-factor value (7.18 at 10 kHz), indicating lower core loss, was observed in the 5.0 wt.% Si samples without annealing.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18102321","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study attempts to enhance the formability and electromagnetic properties of Fe-Si-based soft magnetic composites via process parameter optimization. Two silicon compositions (5.0 and 6.5 wt.%) were examined to determine their influence on density, internal stress, microstructure stability, and magnetic properties using a factorial design comprising 96 different condition combinations. A Pearson correlation analysis revealed a negative relationship between Si content and formability, while magnetic permeability increased with higher Si content. The 5.0 wt.% Si samples exhibited superior density (7.42 g/cm3 vs. 7.28 g/cm3), uniform microstructure, and coating stability. Conversely, the 6.5 wt.% Si samples achieved better permeability (126 at 10 kHz) than 5.0 wt.% Si samples but exhibited higher internal stress, uneven compaction, and thicker insulation layers (~400 nm vs. <10 nm). Scanning electron microscopy and transmission electron microscopy analyses identified necking and damage to the insulation layer. X-ray diffraction verified the stability of the Fe1.6Si0.4 phase after the forming and annealing processes. Secondary molding temperature exhibited the most significant impact on densification, and annealing generally degraded the quality factor (Q-factor). The highest Q-factor value (7.18 at 10 kHz), indicating lower core loss, was observed in the 5.0 wt.% Si samples without annealing.

硅基软磁复合材料制造工艺控制优化。
本研究试图通过工艺参数优化来提高铁硅基软磁复合材料的成形性能和电磁性能。采用96种不同条件组合的析因设计,研究了两种硅成分(5.0和6.5 wt.%)对密度、内应力、微观结构稳定性和磁性能的影响。Pearson相关分析显示,硅含量与成形性呈负相关,而磁导率随硅含量的增加而增加。5.0 wt.% Si样品表现出优异的密度(7.42 g/cm3 vs. 7.28 g/cm3)、均匀的微观结构和涂层稳定性。相反,与5.0 wt.% Si样品相比,6.5 wt.% Si样品在10 kHz时具有更好的磁导率(126),但在成形和退火过程中表现出更高的内应力、不均匀压实和更厚的绝缘层(~400 nm比1.6Si0.4相)。二次成型温度对致密化的影响最为显著,退火一般会降低质量因子(q因子)。在未退火的5.0 wt.% Si样品中观察到最高的q因子值(在10 kHz时为7.18),表明芯损耗较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信