Kang Jia, Chang-Wen Zhang, Zi-Ran Wang, Pei-Ji Wang
{"title":"Monolayer TiAlTe<sub>3</sub>: A Perfect Room-Temperature Valleytronic Semiconductor.","authors":"Kang Jia, Chang-Wen Zhang, Zi-Ran Wang, Pei-Ji Wang","doi":"10.3390/ma18102396","DOIUrl":null,"url":null,"abstract":"<p><p>Investigating valley-related physics in rare intrinsic ferromagnetic materials with high-temperature stability and viable synthesis methods is of vital importance for advancing fundamental physics and information technology. Through first-principles calculations, we forecast that monolayer TiAlTe<sub>3</sub> has superb structural stability, a ferromagnetic coupling mechanism deriving from direct-exchange and superexchange interactions, and a high magnetic transition temperature. We observed spontaneous valley polarization of 103 meV in the bottom conduction band when monolayer TiAlTe<sub>3</sub> is magnetized toward an out-of-plane orientation. Additionally, because of its powerful valley-contrasting Berry curvature, the anomalous valley Hall effect emerges under an in-plane electric field. The cooperation of ferromagnetic coupling, a high magnetic transition temperature, and spontaneous valley polarization makes monolayer TiAlTe<sub>3</sub> a promising room-temperature ferrovalley material for use in nanoscale spintronics and valleytronics.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113017/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18102396","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating valley-related physics in rare intrinsic ferromagnetic materials with high-temperature stability and viable synthesis methods is of vital importance for advancing fundamental physics and information technology. Through first-principles calculations, we forecast that monolayer TiAlTe3 has superb structural stability, a ferromagnetic coupling mechanism deriving from direct-exchange and superexchange interactions, and a high magnetic transition temperature. We observed spontaneous valley polarization of 103 meV in the bottom conduction band when monolayer TiAlTe3 is magnetized toward an out-of-plane orientation. Additionally, because of its powerful valley-contrasting Berry curvature, the anomalous valley Hall effect emerges under an in-plane electric field. The cooperation of ferromagnetic coupling, a high magnetic transition temperature, and spontaneous valley polarization makes monolayer TiAlTe3 a promising room-temperature ferrovalley material for use in nanoscale spintronics and valleytronics.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.