Jarosław Konieczny, Krzysztof Labisz, Satılmış Ürgün, Halil Yiğit, Sinan Fidan, Mustafa Özgür Bora, Şaban Hakan Atapek, Janusz Ćwiek
{"title":"Modelling of Hardness and Electrical Conductivity of Cu-4Ti (wt.%) Alloy and Estimation of Aging Parameters Using Metaheuristic Algorithms.","authors":"Jarosław Konieczny, Krzysztof Labisz, Satılmış Ürgün, Halil Yiğit, Sinan Fidan, Mustafa Özgür Bora, Şaban Hakan Atapek, Janusz Ćwiek","doi":"10.3390/ma18102366","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on cold deformation and age effects on the microhardness and electric conductivity of the Cu-4Ti (wt.%) alloys. The samples were solution treated at 900 °C, quenched in water, and aged at 450-600 °C for 1-120 min. Fifty percent cold rolling was performed before aging to analyze the impact on their microstructure and properties. Hardness and electric conductivity were examined by the Vickers microhardness and Förster testing. Hardness increased significantly while electric conductivity was maintained. The optimal hardness of 298 HV appeared following 50% cold rolling and aging for 120 min at 450 °C, and an electric conductivity of 9.4 MS/m was achieved after 120 min at 600 °C in cold-rolled materials. The deformed and solution-treated materials reached 244 HV after 120 min at 500 °C, and electric conductivity reached 7.7 MS/m. Polynomial models of regression were used to analyze the impact of aging parameters on properties. Process parameters were properly optimized by applying metaheuristic algorithms. These contributions ensure a better understanding of the relationship between the microstructure and properties in Cu-Ti alloys, as well as their application in aircraft and electronics.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113044/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18102366","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on cold deformation and age effects on the microhardness and electric conductivity of the Cu-4Ti (wt.%) alloys. The samples were solution treated at 900 °C, quenched in water, and aged at 450-600 °C for 1-120 min. Fifty percent cold rolling was performed before aging to analyze the impact on their microstructure and properties. Hardness and electric conductivity were examined by the Vickers microhardness and Förster testing. Hardness increased significantly while electric conductivity was maintained. The optimal hardness of 298 HV appeared following 50% cold rolling and aging for 120 min at 450 °C, and an electric conductivity of 9.4 MS/m was achieved after 120 min at 600 °C in cold-rolled materials. The deformed and solution-treated materials reached 244 HV after 120 min at 500 °C, and electric conductivity reached 7.7 MS/m. Polynomial models of regression were used to analyze the impact of aging parameters on properties. Process parameters were properly optimized by applying metaheuristic algorithms. These contributions ensure a better understanding of the relationship between the microstructure and properties in Cu-Ti alloys, as well as their application in aircraft and electronics.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.