{"title":"Detection of Positive and Negative Pressure in a Double-Chamber Underwater Thruster.","authors":"Chong Cao, Chengchun Zhang, Chun Shen, Yasong Zhang, Wen Cheng, Zhengyang Wu, Luquan Ren","doi":"10.3390/mi16050526","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this paper is to develop a compact, rapid-response pressure sensor for underwater propulsion. Flexible pressure sensors are widely utilized in human-computer interactions and wearable electronic devices; however, manufacturing capacitive sensors that offer a broad pressure range and high sensitivity presents significant challenges. Inspired by the dermal papillary microstructure, a capacitive pressure sensor was prepared by infusing polydimethylsiloxane (PDMS) inside an anodic aluminum oxide (AAO) template and then demolding it. The resulting pressure sensor exhibits several key characteristics: high linearity in the range of -5.2 to 6.3 kPa, a comprehensive range for both positive and negative pressure sensing in air or water environments, a quick response time of 52 ms, a recovery time of 40 ms, and excellent stability. The sensor presented in this work is innovatively applied to detect underwater negative pressure, and it is employed for the swift detection of positive and negative pressure changes in underwater thrusters. This work highlights the promising potential of biomimetic flexible capacitive pressure sensors across various applications.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16050526","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to develop a compact, rapid-response pressure sensor for underwater propulsion. Flexible pressure sensors are widely utilized in human-computer interactions and wearable electronic devices; however, manufacturing capacitive sensors that offer a broad pressure range and high sensitivity presents significant challenges. Inspired by the dermal papillary microstructure, a capacitive pressure sensor was prepared by infusing polydimethylsiloxane (PDMS) inside an anodic aluminum oxide (AAO) template and then demolding it. The resulting pressure sensor exhibits several key characteristics: high linearity in the range of -5.2 to 6.3 kPa, a comprehensive range for both positive and negative pressure sensing in air or water environments, a quick response time of 52 ms, a recovery time of 40 ms, and excellent stability. The sensor presented in this work is innovatively applied to detect underwater negative pressure, and it is employed for the swift detection of positive and negative pressure changes in underwater thrusters. This work highlights the promising potential of biomimetic flexible capacitive pressure sensors across various applications.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.