Simulation of the Penetration Process of 7xxx Aluminum Alloy Laminates with Different Configurations.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-05-19 DOI:10.3390/ma18102357
Qunjiao Wang, Shuhan Zhang, Meilin Yin, Hui Zhang, Xinyu Liu, Ruibin Mei, Fuguan Cong, Yunlong Zhang, Yu Cao
{"title":"Simulation of the Penetration Process of 7xxx Aluminum Alloy Laminates with Different Configurations.","authors":"Qunjiao Wang, Shuhan Zhang, Meilin Yin, Hui Zhang, Xinyu Liu, Ruibin Mei, Fuguan Cong, Yunlong Zhang, Yu Cao","doi":"10.3390/ma18102357","DOIUrl":null,"url":null,"abstract":"<p><p>Aluminum alloy laminates have extensive applications in protective armor systems. A simulation-based approach was employed to investigate the anti-penetration performance of aluminum alloy laminates with different configurations. Experiments were carried out to study the mechanical properties of 7055 and 7075 aluminum alloys, and a J-C constitutive model was established for the 7055/7075 aluminum alloy laminate. Based on the J-C constitutive model, numerical simulation was performed to assess the anti-penetration performance of an aluminum alloy laminate with various configurations. Velocity curves during the projectile penetration process were obtained. The simulation results show that the four-layer laminate exhibits superior anti-penetration performance compared to the two-layer laminate. The four-layer laminate with the 7055/7075/7075/7055 configuration demonstrates optimal anti-penetration performance.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18102357","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum alloy laminates have extensive applications in protective armor systems. A simulation-based approach was employed to investigate the anti-penetration performance of aluminum alloy laminates with different configurations. Experiments were carried out to study the mechanical properties of 7055 and 7075 aluminum alloys, and a J-C constitutive model was established for the 7055/7075 aluminum alloy laminate. Based on the J-C constitutive model, numerical simulation was performed to assess the anti-penetration performance of an aluminum alloy laminate with various configurations. Velocity curves during the projectile penetration process were obtained. The simulation results show that the four-layer laminate exhibits superior anti-penetration performance compared to the two-layer laminate. The four-layer laminate with the 7055/7075/7075/7055 configuration demonstrates optimal anti-penetration performance.

7xxx铝合金不同结构层合板的侵彻过程模拟
铝合金层压板在防护装甲系统中有着广泛的应用。采用仿真方法对不同结构的铝合金层压板的抗侵彻性能进行了研究。通过试验研究了7055和7075铝合金的力学性能,建立了7055/7075铝合金层压板的J-C本构模型。基于J-C本构模型,对不同构型铝合金层压板的抗侵彻性能进行了数值模拟。得到了弹丸侵彻过程中的速度曲线。仿真结果表明,与两层复合材料相比,四层复合材料具有更好的抗渗透性能。具有7055/7075/7075/7055结构的四层层压板具有最佳的抗穿透性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信