Demineralized bone matrix combined with concentrated growth factors promotes intervertebral fusion in a novel rat extreme lateral interbody fusion model.
Han Wu, Shaorong Li, WeiJian Wang, Jiaqi Li, Wei Zhang
{"title":"Demineralized bone matrix combined with concentrated growth factors promotes intervertebral fusion in a novel rat extreme lateral interbody fusion model.","authors":"Han Wu, Shaorong Li, WeiJian Wang, Jiaqi Li, Wei Zhang","doi":"10.1186/s13018-025-05954-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Whether demineralized bone matrix (DBM) combined with concentrated growth factors (CGF) can accelerate intervertebral fusion remains uncertain. This study developed a novel rat model for extreme lateral interbody fusion (XLIF) and evaluated the fusion outcomes of DBM combined with CGF using imaging and histological analysis.</p><p><strong>Methods: </strong>A total of 70 male SD rats (3 months old, average body weight 300 ± 50 g) were included in this study. Among them, 10 rats were used for the anatomical study of the lumbar spine. The remaining 48 rats were randomly divided into four groups (n = 12 per group): Group A (control), Group B (titanium plate fixation), Group C (DBM + titanium plate fixation), and Group D (DBM + CGF + titanium plate fixation). The remaining 12 rats were used as donors to prepare fresh CGF. Eight weeks after surgery, the rats were euthanized and lumbar spine specimens were collected, with interbody fusion evaluated by manual palpation. Subsequently, specimens from groups B, C, and D were analyzed by micro-CT and histological examinations to comprehensively assess the fusion outcome.</p><p><strong>Results: </strong>The anatomical and surgical techniques for the rat XLIF model are described. Titanium plates (7 mm × 2.5 mm × 0.8 mm) and screws (3 mm × 1 mm) were designed based on the anatomical measurements. In Group A, spontaneous fusion occurred in 1 case; the remaining 11 cases showed intervertebral mobility. In Group B, 3 cases achieved fusion; in Group C, 8 cases; and in Group D, 11 cases. Micro-CT revealed fusion index scores (FIS) of 2.21 ± 0.51 for Group B, 3.62 ± 0.67 for Group C, and 4.57 ± 0.56 for Group D. Histological examination showed limited bone formation in Group B, with fibrous connective tissue filling the intervertebral space. Group C showed more bone formation, but some cartilage and fibrous tissue remained. Group D demonstrated abundant new bone formation and robust histological fusion, with substantial bridging between vertebrae.</p><p><strong>Conclusion: </strong>The rat XLIF model for interbody fusion has been successfully established and validated. Using this model, it was preliminarily demonstrated that DBM combined with CGF can effectively promote intervertebral fusion in rats.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"20 1","pages":"529"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117761/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-025-05954-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Whether demineralized bone matrix (DBM) combined with concentrated growth factors (CGF) can accelerate intervertebral fusion remains uncertain. This study developed a novel rat model for extreme lateral interbody fusion (XLIF) and evaluated the fusion outcomes of DBM combined with CGF using imaging and histological analysis.
Methods: A total of 70 male SD rats (3 months old, average body weight 300 ± 50 g) were included in this study. Among them, 10 rats were used for the anatomical study of the lumbar spine. The remaining 48 rats were randomly divided into four groups (n = 12 per group): Group A (control), Group B (titanium plate fixation), Group C (DBM + titanium plate fixation), and Group D (DBM + CGF + titanium plate fixation). The remaining 12 rats were used as donors to prepare fresh CGF. Eight weeks after surgery, the rats were euthanized and lumbar spine specimens were collected, with interbody fusion evaluated by manual palpation. Subsequently, specimens from groups B, C, and D were analyzed by micro-CT and histological examinations to comprehensively assess the fusion outcome.
Results: The anatomical and surgical techniques for the rat XLIF model are described. Titanium plates (7 mm × 2.5 mm × 0.8 mm) and screws (3 mm × 1 mm) were designed based on the anatomical measurements. In Group A, spontaneous fusion occurred in 1 case; the remaining 11 cases showed intervertebral mobility. In Group B, 3 cases achieved fusion; in Group C, 8 cases; and in Group D, 11 cases. Micro-CT revealed fusion index scores (FIS) of 2.21 ± 0.51 for Group B, 3.62 ± 0.67 for Group C, and 4.57 ± 0.56 for Group D. Histological examination showed limited bone formation in Group B, with fibrous connective tissue filling the intervertebral space. Group C showed more bone formation, but some cartilage and fibrous tissue remained. Group D demonstrated abundant new bone formation and robust histological fusion, with substantial bridging between vertebrae.
Conclusion: The rat XLIF model for interbody fusion has been successfully established and validated. Using this model, it was preliminarily demonstrated that DBM combined with CGF can effectively promote intervertebral fusion in rats.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.