Ziyi Mei, Hanyue Li, Chuling Huang, Shiyong Ma, Yuejia Li, Pingmeng Deng, Sha Zhou, Aizhuo Qian, Bin Yang, Jie Li
{"title":"Extracellular vesicles from adipose-derived stromal/stem cells reprogram dendritic cells to alleviate rat TMJOA by transferring mitochondria.","authors":"Ziyi Mei, Hanyue Li, Chuling Huang, Shiyong Ma, Yuejia Li, Pingmeng Deng, Sha Zhou, Aizhuo Qian, Bin Yang, Jie Li","doi":"10.1186/s12951-025-03478-9","DOIUrl":null,"url":null,"abstract":"<p><p>Temporomandibular joint osteoarthritis (TMJOA) urgently needs regenerative therapies due to the limited effects of traditional treatments. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are considered a potent alternative for MSC therapy for the treatment of TMJOA. However, the specific mechanisms remain inadequately investigated. In this study, we explored how EVs from adipose-derived stromal/stem cells (ASCs) influence the TMJOA model triggered by Complete Freund's Adjuvant in rats and their impact on the state of dendritic cells (DCs) under pathological conditions. Subsequently, we conducted transcriptomic and metabolomic analyses to elucidate the specific mechanisms by which EVs affect DCs. Mechanistically, we demonstrate that EVs transferred functional mitochondria to DCs, which reverses their metabolic states. The internalized functional mitochondria from EVs activate the MAPK/ERK1/2/FoxO1/autophagy pathway, which causes the metabolic reprogramming of DCs and facilitates the achievement of therapeutic effects. These findings provide a mechanistic rationale for utilizing ASCs-EVs as cell-free alternatives to MSC transplantation in TMJOA therapy.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"389"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117725/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03478-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Temporomandibular joint osteoarthritis (TMJOA) urgently needs regenerative therapies due to the limited effects of traditional treatments. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are considered a potent alternative for MSC therapy for the treatment of TMJOA. However, the specific mechanisms remain inadequately investigated. In this study, we explored how EVs from adipose-derived stromal/stem cells (ASCs) influence the TMJOA model triggered by Complete Freund's Adjuvant in rats and their impact on the state of dendritic cells (DCs) under pathological conditions. Subsequently, we conducted transcriptomic and metabolomic analyses to elucidate the specific mechanisms by which EVs affect DCs. Mechanistically, we demonstrate that EVs transferred functional mitochondria to DCs, which reverses their metabolic states. The internalized functional mitochondria from EVs activate the MAPK/ERK1/2/FoxO1/autophagy pathway, which causes the metabolic reprogramming of DCs and facilitates the achievement of therapeutic effects. These findings provide a mechanistic rationale for utilizing ASCs-EVs as cell-free alternatives to MSC transplantation in TMJOA therapy.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.