Aivaras Špokas, Andrea Zelioli, Andrius Bičiūnas, Bronislovas Čechavičius, Justinas Glemža, Sandra Pralgauskaitė, Mindaugas Kamarauskas, Virginijus Bukauskas, Janis Spigulis, Yi-Jen Chiu, Jonas Matukas, Renata Butkutė
{"title":"Optimising (Al,Ga) (As,Bi) Quantum Well Laser Structures for Reflectance Mode Pulse Oximetry.","authors":"Aivaras Špokas, Andrea Zelioli, Andrius Bičiūnas, Bronislovas Čechavičius, Justinas Glemža, Sandra Pralgauskaitė, Mindaugas Kamarauskas, Virginijus Bukauskas, Janis Spigulis, Yi-Jen Chiu, Jonas Matukas, Renata Butkutė","doi":"10.3390/mi16050506","DOIUrl":null,"url":null,"abstract":"<p><p>We explore quantum well laser diodes for applications in pulse oximetry based on two material systems, namely, classical AlGaAs and a rather exotic GaAsBi, with lasing at around 800 nm and 1100 nm, respectively. These spectral regions and material families were selected due to their closely matched effective penetration depths into soft tissue. An improved design of the band structure of device active areas was tested on both material systems, yielding enhancement of the two main parameters, namely, output power and threshold current. A maximum emission power of the AlGaAs laser diode was registered at 4.9 mW (I = 60 mA, λ = 801 nm). For the GaAsBi-based devices, the target emission of 1106 nm was measured in pulsed mode with a peak output power of 9.4 mW (I = 3 A). The most optimized structure was based on three GaAsBi quantum wells surrounded by parabolically graded AlGaAs barriers. This structure was capable of 130 mW peak power (I = 2 A, λ = 1025 nm) along with a more than tenfold decrease in threshold current to 250 mA compared to a classical rectangular quantum well active region.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16050506","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We explore quantum well laser diodes for applications in pulse oximetry based on two material systems, namely, classical AlGaAs and a rather exotic GaAsBi, with lasing at around 800 nm and 1100 nm, respectively. These spectral regions and material families were selected due to their closely matched effective penetration depths into soft tissue. An improved design of the band structure of device active areas was tested on both material systems, yielding enhancement of the two main parameters, namely, output power and threshold current. A maximum emission power of the AlGaAs laser diode was registered at 4.9 mW (I = 60 mA, λ = 801 nm). For the GaAsBi-based devices, the target emission of 1106 nm was measured in pulsed mode with a peak output power of 9.4 mW (I = 3 A). The most optimized structure was based on three GaAsBi quantum wells surrounded by parabolically graded AlGaAs barriers. This structure was capable of 130 mW peak power (I = 2 A, λ = 1025 nm) along with a more than tenfold decrease in threshold current to 250 mA compared to a classical rectangular quantum well active region.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.