Structural Homology Fails to Predict Secretion Efficiency in Pichia pastoris: Divergent Responses of Architecturally Similar scFvs to Multi-Parametric Genetic Engineering.

IF 5.6 2区 生物学
Ningning Wang, Yang Xiao, Xiyu Liu, Yuanqing Li, Dehua Yu, Jia Guo, Ping Lu, Xiaopeng Zhang
{"title":"Structural Homology Fails to Predict Secretion Efficiency in <i>Pichia pastoris</i>: Divergent Responses of Architecturally Similar scFvs to Multi-Parametric Genetic Engineering.","authors":"Ningning Wang, Yang Xiao, Xiyu Liu, Yuanqing Li, Dehua Yu, Jia Guo, Ping Lu, Xiaopeng Zhang","doi":"10.3390/ijms26104922","DOIUrl":null,"url":null,"abstract":"<p><p>AI-driven biologics manufacturing demands an efficient protein production platform. In this study, we optimized scFv secretion in <i>Pichia pastoris</i> through three strategies: gene dosage optimization, expression cassette design, and endoplasmic reticulum (ER) secretory pathway reprogramming. Using two structurally homologous scFv variants-PR961 and PR953-with divergent basal secretion levels (12.35:1 ratio), we demonstrate that protein-specific thresholds govern optimization efficacy. While increasing gene copy numbers yielded limited improvements (PR961: 1.25-fold at four copies; PR953: 2.37-fold at six copies), reconfiguring the expression cassette to a V<sub>H</sub>-linker-V<sub>L</sub> orientation significantly enhanced secretion (11.18-fold for PR961; 5.09-fold for PR953). Twenty-one genes in three functional modules of the secretory pathway were knocked out or overexpressed. The pathway reprogramming results revealed distinct regulatory dependencies: PR961 secretion relied on ER-to-Golgi trafficking (<i>SEC23</i> overexpression: 1.20-fold), whereas PR953 depended more on upstream translocation (<i>SEC62</i>: 1.66-fold) and oxidative folding (<i>ERO1</i>: 1.81-fold) enhancements. Notably, both variants exhibited a glycosylation-dependent regulation through <i>CNE1</i>. Our findings challenge the assumption that structural homology (63% amino acid identity; RMSD 0.47 Å) ensures consistent optimization outcomes, highlighting the imperative for protein-tailored engineering strategies in synthetic biology.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 10","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120847/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26104922","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

AI-driven biologics manufacturing demands an efficient protein production platform. In this study, we optimized scFv secretion in Pichia pastoris through three strategies: gene dosage optimization, expression cassette design, and endoplasmic reticulum (ER) secretory pathway reprogramming. Using two structurally homologous scFv variants-PR961 and PR953-with divergent basal secretion levels (12.35:1 ratio), we demonstrate that protein-specific thresholds govern optimization efficacy. While increasing gene copy numbers yielded limited improvements (PR961: 1.25-fold at four copies; PR953: 2.37-fold at six copies), reconfiguring the expression cassette to a VH-linker-VL orientation significantly enhanced secretion (11.18-fold for PR961; 5.09-fold for PR953). Twenty-one genes in three functional modules of the secretory pathway were knocked out or overexpressed. The pathway reprogramming results revealed distinct regulatory dependencies: PR961 secretion relied on ER-to-Golgi trafficking (SEC23 overexpression: 1.20-fold), whereas PR953 depended more on upstream translocation (SEC62: 1.66-fold) and oxidative folding (ERO1: 1.81-fold) enhancements. Notably, both variants exhibited a glycosylation-dependent regulation through CNE1. Our findings challenge the assumption that structural homology (63% amino acid identity; RMSD 0.47 Å) ensures consistent optimization outcomes, highlighting the imperative for protein-tailored engineering strategies in synthetic biology.

结构同源性无法预测毕赤酵母的分泌效率:结构相似的scFvs对多参数基因工程的不同反应
人工智能驱动的生物制剂生产需要高效的蛋白质生产平台。在本研究中,我们通过基因剂量优化、表达盒设计和内质网(ER)分泌途径重编程三种策略优化了scFv在毕赤酵母中的分泌。使用两个结构同源的scFv变体——pr961和pr953,它们的基础分泌水平不同(12.35:1的比例),我们证明了蛋白质特异性阈值控制优化效果。而增加基因拷贝数只产生有限的改善(PR961: 4拷贝时1.25倍;PR953: 2.37倍于6个拷贝),将表达盒重新配置为VH-linker-VL取向显著增强了分泌(PR961为11.18倍;5.09倍的PR953)。分泌通路3个功能模块中的21个基因被敲除或过表达。通路重编程结果揭示了不同的调控依赖性:PR961的分泌依赖于er -到高尔基体运输(SEC23过表达:1.20倍),而PR953更多地依赖于上游易位(SEC62: 1.66倍)和氧化折叠(ERO1: 1.81倍)增强。值得注意的是,这两个变体都通过CNE1表现出糖基化依赖性调控。我们的发现挑战了结构同源性(63%的氨基酸同源性;RMSD 0.47 Å)确保了一致的优化结果,突出了合成生物学中蛋白质定制工程策略的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信