{"title":"Topical Molecular Iodine: An Optimal Biocide Constrained by Inadequate Formulations.","authors":"Jack Kessler, Sarah E Hooper","doi":"10.3390/ijms26104853","DOIUrl":null,"url":null,"abstract":"<p><p>The only biocidal iodine species in topical iodine disinfectants is molecular iodine (I2). I2, a biomolecule, has broad-spectrum antimicrobial activity and does not generate resistance. Physicians, regulatory agencies, and scientists have assumed that I2 is responsible for the skin staining and irritation associated with the clinical use of iodine disinfectants; this assumption is deeply embedded in the medical community but is not supported with empirical data. This study provides the first experimental data that measure the biocompatibility of I2 with human skin. Human skin explants in tissue culture were evaluated at 3, 7, and 24 h after being exposed to I2 (500 to 15,000 ppm). Cell viability was measured relative to phosphate-buffered saline using 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl-tetrazolium bromide (MTT). The biocidal activity of I2 vapor emitted from silicone was demonstrated against bacteria growing on agar to confirm I2 off-gassing from skin was an active biocide. Additionally, statistically significant bacterial reductions with both gas and solution phase I2 were observed in a static and dynamic five-species wound biofilm. The data suggest that high, e.g., 50-5000 ppm, levels of I2 should be incorporated into topical iodine disinfectants instead of the very low (0.2-10 ppm) levels found in 10% povidone iodine products currently in use.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 10","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26104853","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The only biocidal iodine species in topical iodine disinfectants is molecular iodine (I2). I2, a biomolecule, has broad-spectrum antimicrobial activity and does not generate resistance. Physicians, regulatory agencies, and scientists have assumed that I2 is responsible for the skin staining and irritation associated with the clinical use of iodine disinfectants; this assumption is deeply embedded in the medical community but is not supported with empirical data. This study provides the first experimental data that measure the biocompatibility of I2 with human skin. Human skin explants in tissue culture were evaluated at 3, 7, and 24 h after being exposed to I2 (500 to 15,000 ppm). Cell viability was measured relative to phosphate-buffered saline using 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl-tetrazolium bromide (MTT). The biocidal activity of I2 vapor emitted from silicone was demonstrated against bacteria growing on agar to confirm I2 off-gassing from skin was an active biocide. Additionally, statistically significant bacterial reductions with both gas and solution phase I2 were observed in a static and dynamic five-species wound biofilm. The data suggest that high, e.g., 50-5000 ppm, levels of I2 should be incorporated into topical iodine disinfectants instead of the very low (0.2-10 ppm) levels found in 10% povidone iodine products currently in use.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).