Afolasayo A Aromiwura, Kara R Gouwens, Daniel C Nguyen, Maryta Sztukowska, Luanne Didelot, Dinesh K Kalra
{"title":"Ketone Bodies in the Regulation of Myocardial Perfusion in Cardiovascular Disease: Metabolic and Vasodilatory Effects.","authors":"Afolasayo A Aromiwura, Kara R Gouwens, Daniel C Nguyen, Maryta Sztukowska, Luanne Didelot, Dinesh K Kalra","doi":"10.3390/ijms26104856","DOIUrl":null,"url":null,"abstract":"<p><p>Ketone bodies (KBs) serve as an alternative energy source for healthy and failing hearts and have important effects on myocardial blood perfusion in both physiological and pathological states. Early animal studies suggest that KBs may provide protective benefits in ischemic heart disease and heart failure. Under normal circumstances, coronary blood flow regulation is an intricate system with contributions from metabolic, autonomic, compressive, and endothelial factors, with the metabolic regulatory pathway being the most significant contributor. We conducted a non-systematic review of studies published between 1987 and 2024. In this review, we explored the physiological autoregulation of normal coronary blood flow, the role of ketone bodies in myocardial perfusion in health and disease, and the potential role of exogenous ketone body supplementation in producing salutary effects on myocardial blood flow (MBF) and metabolism in exercise and cardiac disease states including ischemia, heart failure, and the aging heart. Overall, our findings demonstrated that KBs improve MBF and ejection fraction in healthy human subjects and have beneficial effects on cardiac output and left heart filling pressures in patients with decompensated heart failure. Although resting myocardial blood flow decreases with age, further studies are required to assess the impact of KBs on MBF in aging populations. Additionally, more research is needed to investigate the effects of KBs during exercise and in instances of myocardial ischemia.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 10","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26104856","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ketone bodies (KBs) serve as an alternative energy source for healthy and failing hearts and have important effects on myocardial blood perfusion in both physiological and pathological states. Early animal studies suggest that KBs may provide protective benefits in ischemic heart disease and heart failure. Under normal circumstances, coronary blood flow regulation is an intricate system with contributions from metabolic, autonomic, compressive, and endothelial factors, with the metabolic regulatory pathway being the most significant contributor. We conducted a non-systematic review of studies published between 1987 and 2024. In this review, we explored the physiological autoregulation of normal coronary blood flow, the role of ketone bodies in myocardial perfusion in health and disease, and the potential role of exogenous ketone body supplementation in producing salutary effects on myocardial blood flow (MBF) and metabolism in exercise and cardiac disease states including ischemia, heart failure, and the aging heart. Overall, our findings demonstrated that KBs improve MBF and ejection fraction in healthy human subjects and have beneficial effects on cardiac output and left heart filling pressures in patients with decompensated heart failure. Although resting myocardial blood flow decreases with age, further studies are required to assess the impact of KBs on MBF in aging populations. Additionally, more research is needed to investigate the effects of KBs during exercise and in instances of myocardial ischemia.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).