{"title":"Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on the Chemical Structure.","authors":"Shengjie Xu, Lingxi Xie, Rujie Dai, Zehua Lyu","doi":"10.3390/ijms26104859","DOIUrl":null,"url":null,"abstract":"<p><p>Antibody-drug conjugates (ADCs) are promising cancer therapeutics, but optimizing their cytotoxic payloads remains challenging. We present DumplingGNN, a novel hybrid Graph Neural Network architecture for predicting ADC payload activity and toxicity. Integrating MPNN, GAT, and GraphSAGE layers, DumplingGNN captures multi-scale molecular features using both 2D and 3D structural information. Evaluated on a comprehensive ADC payload dataset and MoleculeNet benchmarks, DumplingGNN achieves state-of-the-art performance, including BBBP (96.4% ROC-AUC), ToxCast (78.2% ROC-AUC), and PCBA (88.87% ROC-AUC). On our specialized ADC payload dataset, it demonstrates 91.48% accuracy, 95.08% sensitivity, and 97.54% specificity. Ablation studies confirm the hybrid architecture's synergy and the importance of 3D information. The model's interpretability provides insights into structure-activity relationships. DumplingGNN's robust toxicity prediction capabilities make it valuable for early safety evaluation and biomedical regulation. As a research prototype, DumplingGNN is being considered for integration into Omni Medical, an AI-driven drug discovery platform currently under development, demonstrating its potential for future practical applications. This advancement promises to accelerate ADC payload design, particularly for Topoisomerase I inhibitor-based payloads, and improve early-stage drug safety assessment in targeted cancer therapy development.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 10","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26104859","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Antibody-drug conjugates (ADCs) are promising cancer therapeutics, but optimizing their cytotoxic payloads remains challenging. We present DumplingGNN, a novel hybrid Graph Neural Network architecture for predicting ADC payload activity and toxicity. Integrating MPNN, GAT, and GraphSAGE layers, DumplingGNN captures multi-scale molecular features using both 2D and 3D structural information. Evaluated on a comprehensive ADC payload dataset and MoleculeNet benchmarks, DumplingGNN achieves state-of-the-art performance, including BBBP (96.4% ROC-AUC), ToxCast (78.2% ROC-AUC), and PCBA (88.87% ROC-AUC). On our specialized ADC payload dataset, it demonstrates 91.48% accuracy, 95.08% sensitivity, and 97.54% specificity. Ablation studies confirm the hybrid architecture's synergy and the importance of 3D information. The model's interpretability provides insights into structure-activity relationships. DumplingGNN's robust toxicity prediction capabilities make it valuable for early safety evaluation and biomedical regulation. As a research prototype, DumplingGNN is being considered for integration into Omni Medical, an AI-driven drug discovery platform currently under development, demonstrating its potential for future practical applications. This advancement promises to accelerate ADC payload design, particularly for Topoisomerase I inhibitor-based payloads, and improve early-stage drug safety assessment in targeted cancer therapy development.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).