S Tamilselvi, M Suchetha, Dhanashree Ratra, Janani Surya, S Preethi, Rajiv Raman
{"title":"Evaluating anti-VEGF responses in diabetic macular edema: A systematic review with AI-powered treatment insights.","authors":"S Tamilselvi, M Suchetha, Dhanashree Ratra, Janani Surya, S Preethi, Rajiv Raman","doi":"10.4103/IJO.IJO_1810_24","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in deep learning and machine learning have greatly increased the capabilities of extracting features for evaluating the response to anti VEGF treatment in patients with Diabetic Macular Edema (DME). In this review, we explore how these algorithms can be used for discriminating between responders and non-responders to anti vascular endothelial growth factor (VEGF) injections. Electronic databases, including PubMed, IEEE Xplore, BioMed, JAMA, and Google Scholar, were searched, and reference lists from relevant publications were also considered from inception till August 31, 2023, based on the inclusion and exclusion criteria. Data extraction was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The results focus on keywords such as DME, OCT, anti VEGF, and patient responses after anti VEGF injections. The article measures the effectiveness of different machine learning and deep learning algorithms, including linear discriminant analysis (LDA), ResNet-50, CNN with attention, quadratic discriminant analysis (QDA), random forest (RF), and support vector machines (SVM), in analyzing eyes that could tolerate extended interval dosing. According to a review of 50 relevant papers published between 2016 and 2023, the algorithms achieved an average automated sensitivity of 74% (95% CI: 0.55-0.92) in detecting treatment responses.</p>","PeriodicalId":13329,"journal":{"name":"Indian Journal of Ophthalmology","volume":"73 6","pages":"797-806"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178353/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/IJO.IJO_1810_24","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in deep learning and machine learning have greatly increased the capabilities of extracting features for evaluating the response to anti VEGF treatment in patients with Diabetic Macular Edema (DME). In this review, we explore how these algorithms can be used for discriminating between responders and non-responders to anti vascular endothelial growth factor (VEGF) injections. Electronic databases, including PubMed, IEEE Xplore, BioMed, JAMA, and Google Scholar, were searched, and reference lists from relevant publications were also considered from inception till August 31, 2023, based on the inclusion and exclusion criteria. Data extraction was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The results focus on keywords such as DME, OCT, anti VEGF, and patient responses after anti VEGF injections. The article measures the effectiveness of different machine learning and deep learning algorithms, including linear discriminant analysis (LDA), ResNet-50, CNN with attention, quadratic discriminant analysis (QDA), random forest (RF), and support vector machines (SVM), in analyzing eyes that could tolerate extended interval dosing. According to a review of 50 relevant papers published between 2016 and 2023, the algorithms achieved an average automated sensitivity of 74% (95% CI: 0.55-0.92) in detecting treatment responses.
期刊介绍:
Indian Journal of Ophthalmology covers clinical, experimental, basic science research and translational research studies related to medical, ethical and social issues in field of ophthalmology and vision science. Articles with clinical interest and implications will be given preference.