Chun Bai, Ran Liu, Liuyang Shen, Yu Zhuang, Jiaying Hu
{"title":"Effects of Konjac Glucomannan and Curdlan on the 3D Printability and Physicochemical Properties of Germinated Brown Rice Gel.","authors":"Chun Bai, Ran Liu, Liuyang Shen, Yu Zhuang, Jiaying Hu","doi":"10.3390/foods14101764","DOIUrl":null,"url":null,"abstract":"<p><p>Germinated brown rice (GBR), rich in high starch content and bioactive compounds, has excellent gel-forming properties, rendering it highly promising for applications in food 3D printing, a cutting-edge personalized manufacturing technology. This study systematically investigates the effects of different concentrations of konjac glucomannan (KGM) and curdlan (CD) blends on the 3D printing performance and physicochemical properties of GBR gel. The results indicated that the appropriate addition of KGM/CD blends significantly enhances the printing accuracy and shape retention of GBR gel. Specifically, under the KGM to CD ratio of 3:1 (KC3) formulation obtained by combining 2.25% KGM and 0.75% CD, the printing accuracy was highest with a minimized error of 4.97 ± 0.45%, and optimal structural stability was maintained within 5 h post-printing. Rheological measurements revealed that the flow behavior index (<i>n</i>) of the KC3 system was 0.049 ± 0.014, indicating superior flowability and significantly improved overall rheological stability. Additionally, the blend system not only increased the hardness and gel elasticity of the GBR gel but also significantly enhanced its cohesiveness and adhesiveness, reaching the highest values of 0.323 ± 0.02 and -217.488 ± 22.499, respectively, in the KC3 formulation. Further thermal analysis, low-field nuclear magnetic resonance analysis, along with Fourier-transform infrared spectroscopy and scanning electron microscopy observations, collectively demonstrated that the KGM/CD blend effectively reinforced the stability of the GBR gel network structure. These findings provide theoretical support for optimizing GBR applications in food 3D printing.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14101764","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Germinated brown rice (GBR), rich in high starch content and bioactive compounds, has excellent gel-forming properties, rendering it highly promising for applications in food 3D printing, a cutting-edge personalized manufacturing technology. This study systematically investigates the effects of different concentrations of konjac glucomannan (KGM) and curdlan (CD) blends on the 3D printing performance and physicochemical properties of GBR gel. The results indicated that the appropriate addition of KGM/CD blends significantly enhances the printing accuracy and shape retention of GBR gel. Specifically, under the KGM to CD ratio of 3:1 (KC3) formulation obtained by combining 2.25% KGM and 0.75% CD, the printing accuracy was highest with a minimized error of 4.97 ± 0.45%, and optimal structural stability was maintained within 5 h post-printing. Rheological measurements revealed that the flow behavior index (n) of the KC3 system was 0.049 ± 0.014, indicating superior flowability and significantly improved overall rheological stability. Additionally, the blend system not only increased the hardness and gel elasticity of the GBR gel but also significantly enhanced its cohesiveness and adhesiveness, reaching the highest values of 0.323 ± 0.02 and -217.488 ± 22.499, respectively, in the KC3 formulation. Further thermal analysis, low-field nuclear magnetic resonance analysis, along with Fourier-transform infrared spectroscopy and scanning electron microscopy observations, collectively demonstrated that the KGM/CD blend effectively reinforced the stability of the GBR gel network structure. These findings provide theoretical support for optimizing GBR applications in food 3D printing.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds