The Domestication and Cultivation of Pholiota adiposa and Its High-Temperature Adaptability: Enhancing the Utilization of Agricultural Residues and Grain Nutrition in Northeast China.
Hu Lou, Baozhen Fan, Chao Guo, Yurong Liang, Weizhi Wang, Enze Yu, Jie Zhang, Guocai Zhang
{"title":"The Domestication and Cultivation of <i>Pholiota adiposa</i> and Its High-Temperature Adaptability: Enhancing the Utilization of Agricultural Residues and Grain Nutrition in Northeast China.","authors":"Hu Lou, Baozhen Fan, Chao Guo, Yurong Liang, Weizhi Wang, Enze Yu, Jie Zhang, Guocai Zhang","doi":"10.3390/foods14101779","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pholiota adiposa</i> is a macrofungi that is rich in nutrients and has a delicious taste. Eating more can improve human immunity and inhibit cancer. However, the <i>P. adiposa</i> yield is low and cannot meet market demand. Therefore, strain improvement was carried out by exploring the mechanism of stress adaptation in <i>P. adiposa</i>. In addition, fermentation of the four common grains by <i>P. adiposa</i> mycelia increased their nutrient content and improved their antioxidant capacity. The results revealed that the growth of the mycelium was greatest when sucrose was used as the carbon source at 25 °C. At 35 °C, the MDA content and cellulase enzyme activity of the mycelia decreased by 27.6% and 40.8%, respectively, from 2 to 4 days, and the SOD, CAT, and GR enzyme activities increased by 31.6%, 49.2%, and 1.2%, respectively. The fermentation results revealed that the soluble protein content, reducing sugar content, and DPPH free radical scavenging ability of the fermented grains were significantly greater than those of the unfermented grains. This study can be used to cultivate macrofungi with environmental adaptability and provides a basis for the utilization of biological waste and increased food nutrition.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14101779","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pholiota adiposa is a macrofungi that is rich in nutrients and has a delicious taste. Eating more can improve human immunity and inhibit cancer. However, the P. adiposa yield is low and cannot meet market demand. Therefore, strain improvement was carried out by exploring the mechanism of stress adaptation in P. adiposa. In addition, fermentation of the four common grains by P. adiposa mycelia increased their nutrient content and improved their antioxidant capacity. The results revealed that the growth of the mycelium was greatest when sucrose was used as the carbon source at 25 °C. At 35 °C, the MDA content and cellulase enzyme activity of the mycelia decreased by 27.6% and 40.8%, respectively, from 2 to 4 days, and the SOD, CAT, and GR enzyme activities increased by 31.6%, 49.2%, and 1.2%, respectively. The fermentation results revealed that the soluble protein content, reducing sugar content, and DPPH free radical scavenging ability of the fermented grains were significantly greater than those of the unfermented grains. This study can be used to cultivate macrofungi with environmental adaptability and provides a basis for the utilization of biological waste and increased food nutrition.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds