Bernardo S Raimundo, Pedro M Leitão, Manuel Vinhas, Maria V Pires, Laura B Quintas, Catarina Carvalheiro, Rita Barata, Joana Ip, Ricardo Coelho, Sofia Granadeiro, Tânia S Simões, João Gonçalves, Renato Baião, Carla Rocha, Sandra Alves, Paulo Fidalgo, Alípio Araújo, Cláudia Matos, Susana Simões, Paula Alves, Patrícia Garrido, Marcos Pantarotto, Luís Carreiro, Rogério Matos, Cristina Bárbara, Jorge Cruz, Nuno Gil, Fernando Luis-Ferreira, Pedro D Vaz
{"title":"Breath Insights: Advancing Lung Cancer Early-Stage Detection Through AI Algorithms in Non-Invasive VOC Profiling Trials.","authors":"Bernardo S Raimundo, Pedro M Leitão, Manuel Vinhas, Maria V Pires, Laura B Quintas, Catarina Carvalheiro, Rita Barata, Joana Ip, Ricardo Coelho, Sofia Granadeiro, Tânia S Simões, João Gonçalves, Renato Baião, Carla Rocha, Sandra Alves, Paulo Fidalgo, Alípio Araújo, Cláudia Matos, Susana Simões, Paula Alves, Patrícia Garrido, Marcos Pantarotto, Luís Carreiro, Rogério Matos, Cristina Bárbara, Jorge Cruz, Nuno Gil, Fernando Luis-Ferreira, Pedro D Vaz","doi":"10.3390/cancers17101685","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background:</i> Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Effective screening strategies for early diagnosis that could improve disease prognosis are lacking. Non-invasive breath analysis of volatile organic compounds (VOC) is a potential method for earlier LC detection. This study explores the association of VOC profiles with artificial intelligence (AI) to achieve a sensitive, specific, and fast method for LC detection. <i>Patients and methods:</i> Exhaled breath air samples were collected from 123 healthy individuals and 73 LC patients at two clinical sites. The enrolled patients had LC diagnosed with different stages. Breath samples were collected before undergoing any treatment, including surgery, and analyzed using gas chromatography coupled to ion-mobility spectrometry (GC-IMS). AI methods classified the overall chromatographic profiles. <i>Results:</i> GC-IMS is highly sensitive, yielding detailed chromatographic profiles. AI methods ranked the sets of exhaled breath profiles across both groups through training and validation steps, while qualitative information was deliberately not taking part nor influencing the results. The K-nearest neighbor (KNN) algorithm classified the groups with an accuracy of 90% (sensitivity = 87%, specificity = 92%). Narrowing the LC group to those only in early-stage IA, the accuracy was 90% (sensitivity = 90%, specificity = 93%). <i>Conclusions:</i> Evaluation of the global exhaled breath profiles using AI algorithms enabled LC detection and demonstrated that qualitative information may not be required, thus easing the frustration that many studies have experienced so far. The results show that this approach coupled with screening protocols may improve earlier detection of LC and hence its prognosis.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 10","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110429/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17101685","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Effective screening strategies for early diagnosis that could improve disease prognosis are lacking. Non-invasive breath analysis of volatile organic compounds (VOC) is a potential method for earlier LC detection. This study explores the association of VOC profiles with artificial intelligence (AI) to achieve a sensitive, specific, and fast method for LC detection. Patients and methods: Exhaled breath air samples were collected from 123 healthy individuals and 73 LC patients at two clinical sites. The enrolled patients had LC diagnosed with different stages. Breath samples were collected before undergoing any treatment, including surgery, and analyzed using gas chromatography coupled to ion-mobility spectrometry (GC-IMS). AI methods classified the overall chromatographic profiles. Results: GC-IMS is highly sensitive, yielding detailed chromatographic profiles. AI methods ranked the sets of exhaled breath profiles across both groups through training and validation steps, while qualitative information was deliberately not taking part nor influencing the results. The K-nearest neighbor (KNN) algorithm classified the groups with an accuracy of 90% (sensitivity = 87%, specificity = 92%). Narrowing the LC group to those only in early-stage IA, the accuracy was 90% (sensitivity = 90%, specificity = 93%). Conclusions: Evaluation of the global exhaled breath profiles using AI algorithms enabled LC detection and demonstrated that qualitative information may not be required, thus easing the frustration that many studies have experienced so far. The results show that this approach coupled with screening protocols may improve earlier detection of LC and hence its prognosis.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.