Sayumi Yamazoe, Qinqin Cheng, Srikanth Kotapati, Vangipuram S Rangan, Mei-Chen Sung, Madhura Deshpande, Aarti Jashnani, Cong Qiang, Michael J Smith, Chin Pan, Gavin Dollinger, Arvind Rajpal, Pavel Strop, Chetana Rao
{"title":"The Impact of Conjugation Mode and Site on Tubulysin Antibody-Drug-Conjugate Efficacy and Stability.","authors":"Sayumi Yamazoe, Qinqin Cheng, Srikanth Kotapati, Vangipuram S Rangan, Mei-Chen Sung, Madhura Deshpande, Aarti Jashnani, Cong Qiang, Michael J Smith, Chin Pan, Gavin Dollinger, Arvind Rajpal, Pavel Strop, Chetana Rao","doi":"10.1002/open.202400522","DOIUrl":null,"url":null,"abstract":"<p><p>Antibody-drug conjugates (ADCs) represent a prominent class of biotherapeutics engineered to selectively deliver cytotoxic payloads to tumors, thereby facilitating targeted cell killing. While first-generation ADCs, created by conjugating payloads to surface-accessible lysine or hinge-cysteine residues, have achieved clinical success, several site-specific ADCs with defined drug-to-antibody ratios are currently under clinical investigation. Herein, the efficacy, stability, and pharmacokinetics of ADCs generated by attaching the drug linker to surface-exposed lysine residues, hinge-cysteine residues, and the C'E loop in the CH2 domain (mediated by bacterial transglutaminase) using a tubulysin payload are compared. In N87 xenograft mice, the order of efficacy is C'E loop > hinge-cysteine > lysine-conjugated ADCs. Among the three ADCs evaluated, the site-specific ADC demonstrates superior in vivo stability (minimal payload-linker deconjugation and limited payload metabolism/deacetylation) and favorable pharmacokinetics (longer half-life, low clearance, high exposure). In contrast, the lysine-conjugated ADC exhibits the least stability and poorest pharmacokinetics, which directly correlate with its efficacy. Further investigation into cysteine-engineered site-specific ADCs with payloads conjugated at various sites confirms that both the conjugation chemistry and the site of conjugation significantly influence the in vivo stability and pharmacokinetics of site-specific ADCs.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e2400522"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400522","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibody-drug conjugates (ADCs) represent a prominent class of biotherapeutics engineered to selectively deliver cytotoxic payloads to tumors, thereby facilitating targeted cell killing. While first-generation ADCs, created by conjugating payloads to surface-accessible lysine or hinge-cysteine residues, have achieved clinical success, several site-specific ADCs with defined drug-to-antibody ratios are currently under clinical investigation. Herein, the efficacy, stability, and pharmacokinetics of ADCs generated by attaching the drug linker to surface-exposed lysine residues, hinge-cysteine residues, and the C'E loop in the CH2 domain (mediated by bacterial transglutaminase) using a tubulysin payload are compared. In N87 xenograft mice, the order of efficacy is C'E loop > hinge-cysteine > lysine-conjugated ADCs. Among the three ADCs evaluated, the site-specific ADC demonstrates superior in vivo stability (minimal payload-linker deconjugation and limited payload metabolism/deacetylation) and favorable pharmacokinetics (longer half-life, low clearance, high exposure). In contrast, the lysine-conjugated ADC exhibits the least stability and poorest pharmacokinetics, which directly correlate with its efficacy. Further investigation into cysteine-engineered site-specific ADCs with payloads conjugated at various sites confirms that both the conjugation chemistry and the site of conjugation significantly influence the in vivo stability and pharmacokinetics of site-specific ADCs.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.