Lu Rao, Wenxing Li, Yufeng Shen, Wendy K Chung, Arne Gennerich
{"title":"Distinct Clinical Phenotypes in KIF1A-Associated Neurological Disorders Result from Different Amino Acid Substitutions at the Same Residue in KIF1A.","authors":"Lu Rao, Wenxing Li, Yufeng Shen, Wendy K Chung, Arne Gennerich","doi":"10.3390/biom15050656","DOIUrl":null,"url":null,"abstract":"<p><p>KIF1A is a neuron-specific kinesin motor responsible for intracellular transport along axons. Pathogenic <i>KIF1A</i> mutations cause KIF1A-associated neurological disorders (KAND), a spectrum of severe neurodevelopmental and neurodegenerative conditions. While individual <i>KIF1A</i> mutations have been studied, how different substitutions at the same residue affect motor function and disease progression remains unclear. Here, we systematically examine the molecular and clinical consequences of mutations at three key motor domain residues-R216, R254, and R307-using single-molecule motility assays and genotype-phenotype associations. We find that different substitutions at the same residue produce distinct molecular phenotypes, and that homodimeric mutant motor properties correlate with developmental outcomes. In addition, we present the first analysis of heterodimeric KIF1A motors-mimicking the heterozygous context in patients-and demonstrate that while heterodimers retain substantial motility, their properties are less predictive of clinical severity than homodimers. These results highlight the finely tuned mechanochemical properties of KIF1A and suggest that dysfunctional homodimers may disproportionately drive the diverse clinical phenotypes observed in KAND. By establishing residue-specific genotype-phenotype relationships, this work provides fundamental insights into KAND pathogenesis and informs targeted therapeutic strategies.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 5","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109325/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15050656","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
KIF1A is a neuron-specific kinesin motor responsible for intracellular transport along axons. Pathogenic KIF1A mutations cause KIF1A-associated neurological disorders (KAND), a spectrum of severe neurodevelopmental and neurodegenerative conditions. While individual KIF1A mutations have been studied, how different substitutions at the same residue affect motor function and disease progression remains unclear. Here, we systematically examine the molecular and clinical consequences of mutations at three key motor domain residues-R216, R254, and R307-using single-molecule motility assays and genotype-phenotype associations. We find that different substitutions at the same residue produce distinct molecular phenotypes, and that homodimeric mutant motor properties correlate with developmental outcomes. In addition, we present the first analysis of heterodimeric KIF1A motors-mimicking the heterozygous context in patients-and demonstrate that while heterodimers retain substantial motility, their properties are less predictive of clinical severity than homodimers. These results highlight the finely tuned mechanochemical properties of KIF1A and suggest that dysfunctional homodimers may disproportionately drive the diverse clinical phenotypes observed in KAND. By establishing residue-specific genotype-phenotype relationships, this work provides fundamental insights into KAND pathogenesis and informs targeted therapeutic strategies.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.