{"title":"Molecular and Biophysical Perspectives on Dormancy Breaking: Lessons from Yeast Spore.","authors":"Keiichiro Sakai, Yohei Kondo, Kazuhiro Aoki, Yuhei Goto","doi":"10.3390/biom15050701","DOIUrl":null,"url":null,"abstract":"<p><p>Dormancy is a physiological state that enables cells to survive under adverse conditions by halting their proliferation while retaining the capacity to resume growth when conditions become favorable. This remarkable transition between dormant and proliferative states occurs across a wide range of species, including bacteria, fungi, plants, and tardigrades. Among these organisms, yeast cells have emerged as powerful model systems for elucidating the molecular and biophysical principles governing dormancy and dormancy breaking. In this review, we provide a comprehensive summary of current knowledge on the molecular mechanisms underlying cellular dormancy, with particular focus on the two major model yeasts: <i>Saccharomyces cerevisiae</i> and <i>Schizosaccharomyces pombe</i>. Recent advances in multifaceted approaches-such as single-cell RNA-seq, proteomic analysis, and live-cell imaging-have revealed dynamic changes in gene expression, proteome composition, and viability. Furthermore, insights into the biophysical properties of the cytoplasm have offered new understanding of dormant cell regulation through changes in cytoplasmic fluidity. These properties contribute to both the remarkable stability of dormant cells and their capacity to exit dormancy upon environmental cues, deepening our understanding of fundamental cellular survival strategies across diverse species.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 5","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15050701","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dormancy is a physiological state that enables cells to survive under adverse conditions by halting their proliferation while retaining the capacity to resume growth when conditions become favorable. This remarkable transition between dormant and proliferative states occurs across a wide range of species, including bacteria, fungi, plants, and tardigrades. Among these organisms, yeast cells have emerged as powerful model systems for elucidating the molecular and biophysical principles governing dormancy and dormancy breaking. In this review, we provide a comprehensive summary of current knowledge on the molecular mechanisms underlying cellular dormancy, with particular focus on the two major model yeasts: Saccharomyces cerevisiae and Schizosaccharomyces pombe. Recent advances in multifaceted approaches-such as single-cell RNA-seq, proteomic analysis, and live-cell imaging-have revealed dynamic changes in gene expression, proteome composition, and viability. Furthermore, insights into the biophysical properties of the cytoplasm have offered new understanding of dormant cell regulation through changes in cytoplasmic fluidity. These properties contribute to both the remarkable stability of dormant cells and their capacity to exit dormancy upon environmental cues, deepening our understanding of fundamental cellular survival strategies across diverse species.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.