Rohit Yadav, Juergen Pfeffermann, Nikolaus Goessweiner-Mohr, Toma Glasnov, Sergey A Akimov, Peter Pohl
{"title":"Modulation of Kv Channel Gating by Light-Controlled Membrane Thickness.","authors":"Rohit Yadav, Juergen Pfeffermann, Nikolaus Goessweiner-Mohr, Toma Glasnov, Sergey A Akimov, Peter Pohl","doi":"10.3390/biom15050744","DOIUrl":null,"url":null,"abstract":"<p><p>Voltage-gated potassium (Kv) channels are e ssential for shaping action potentials and rely on anionic lipids for proper gating, yet the mechanistic basis of lipid-channel interactions remains unclear. Cryo-electron microscopy studies suggest that, in the down state, arginine residues of the voltage sensor draw lipid phosphates upward, leading to a local membrane thinning of ~5 Å-an effect absent in the open state. To test whether membrane thickness directly affects voltage sensor function, we reconstituted Kv channels from <i>Aeropyrum pernix</i> (KvAP) into planar lipid bilayers containing photoswitchable lipids. Upon blue light illumination, the membrane thickened, and KvAP activity increased; UV light reversed both effects. Our findings indicate that membrane thickening weakens the interaction between lipid phosphates and voltage-sensing arginines in the down state, lowering the energy barrier for the transition to the up state and thereby promoting channel opening. This non-genetic, membrane-mediated approach provides a new strategy to control ion channel activity using light and establishes a direct, reversible link between membrane mechanics and voltage sensing, with potential applications in the remote control of neuronal excitability.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 5","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15050744","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Voltage-gated potassium (Kv) channels are e ssential for shaping action potentials and rely on anionic lipids for proper gating, yet the mechanistic basis of lipid-channel interactions remains unclear. Cryo-electron microscopy studies suggest that, in the down state, arginine residues of the voltage sensor draw lipid phosphates upward, leading to a local membrane thinning of ~5 Å-an effect absent in the open state. To test whether membrane thickness directly affects voltage sensor function, we reconstituted Kv channels from Aeropyrum pernix (KvAP) into planar lipid bilayers containing photoswitchable lipids. Upon blue light illumination, the membrane thickened, and KvAP activity increased; UV light reversed both effects. Our findings indicate that membrane thickening weakens the interaction between lipid phosphates and voltage-sensing arginines in the down state, lowering the energy barrier for the transition to the up state and thereby promoting channel opening. This non-genetic, membrane-mediated approach provides a new strategy to control ion channel activity using light and establishes a direct, reversible link between membrane mechanics and voltage sensing, with potential applications in the remote control of neuronal excitability.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.