Marta Santos, Marcos Mariz, Igor Tiago, Susana Alarico, Paula Ferreira
{"title":"Bio-Based Polyurethane Foams: Feedstocks, Synthesis, and Applications.","authors":"Marta Santos, Marcos Mariz, Igor Tiago, Susana Alarico, Paula Ferreira","doi":"10.3390/biom15050680","DOIUrl":null,"url":null,"abstract":"<p><p>Polyurethanes (PUs) are extremely versatile materials used across different industries. Traditionally, they are synthesized by reacting polyols and isocyanates, both of which are petroleum-derived reagents. In response to the demand for more eco-friendly materials, research has increasingly focused on developing new routes for PU synthesis using renewable feedstocks. While substituting isocyanates remains a greater challenge, replacing fossil-based polyols with bio-based alternatives is now a promising strategy. This review explores the main natural sources and their transformations into bio-polyols, the incorporation of bio-fillers into PU formulations, and the production of non-isocyanate polyurethanes (NIPUs). Additionally, the study summarizes the growing body of research that has reported successful outcomes using bio-polyols in PU foams for distinct applications.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 5","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15050680","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyurethanes (PUs) are extremely versatile materials used across different industries. Traditionally, they are synthesized by reacting polyols and isocyanates, both of which are petroleum-derived reagents. In response to the demand for more eco-friendly materials, research has increasingly focused on developing new routes for PU synthesis using renewable feedstocks. While substituting isocyanates remains a greater challenge, replacing fossil-based polyols with bio-based alternatives is now a promising strategy. This review explores the main natural sources and their transformations into bio-polyols, the incorporation of bio-fillers into PU formulations, and the production of non-isocyanate polyurethanes (NIPUs). Additionally, the study summarizes the growing body of research that has reported successful outcomes using bio-polyols in PU foams for distinct applications.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.