Huimin Zhang, Shuo Yan, Zimeng Ma, Ruilin Du, Xihe Li, Siqin Bao, Yongli Song
{"title":"AMPK Signaling Axis-Mediated Regulation of Lipid Metabolism: Ameliorative Effects of Sodium Octanoate on Intestinal Dysfunction in Hu Sheep.","authors":"Huimin Zhang, Shuo Yan, Zimeng Ma, Ruilin Du, Xihe Li, Siqin Bao, Yongli Song","doi":"10.3390/biom15050707","DOIUrl":null,"url":null,"abstract":"<p><p>At the present stage, heavy metal pollution, led by environmental exposure to cadmium (Cd), has caused incalculable losses in animal husbandry. The potential value of caprylic acid as a medium- and long-chain fatty acid with a unique role in regulating lipid metabolism has attracted much attention. Our previous study found that octanoic acid levels were significantly reduced under Cd-exposed conditions in Hu Sheep, on the basis of which we investigated the protective effect of sodium octanoate, a derivative of octanoic acid, against Cd exposure in Hu Sheep in the present study. In this study, an animal model of Cd exposure in Hu Sheep was established. Comprehensive assessment of Cd-induced intestinal injury using hematoxylin and eosin (H&E) staining, immunostaining and carried out in-depth analyses combined with lipid metabolomics and transcriptomics. The results showed that Cd exposure triggered intestinal inflammation, barrier function damage and oxidative stress imbalance. Lipid metabolomics analysis showed that Cd exposure severely disrupted lipid metabolic processes, especially the glycerophospholipid metabolic pathway, suggesting that lipid metabolic disorders are closely related to intestinal injury. Notably, sodium octanoate could partially reverse the lipid metabolism abnormality by regulating the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, effectively alleviating the Cd toxicity, which provides a brand-new prevention and control strategy for Cd-induced intestinal injury in the livestock industry pollution-mediated disease.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 5","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15050707","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
At the present stage, heavy metal pollution, led by environmental exposure to cadmium (Cd), has caused incalculable losses in animal husbandry. The potential value of caprylic acid as a medium- and long-chain fatty acid with a unique role in regulating lipid metabolism has attracted much attention. Our previous study found that octanoic acid levels were significantly reduced under Cd-exposed conditions in Hu Sheep, on the basis of which we investigated the protective effect of sodium octanoate, a derivative of octanoic acid, against Cd exposure in Hu Sheep in the present study. In this study, an animal model of Cd exposure in Hu Sheep was established. Comprehensive assessment of Cd-induced intestinal injury using hematoxylin and eosin (H&E) staining, immunostaining and carried out in-depth analyses combined with lipid metabolomics and transcriptomics. The results showed that Cd exposure triggered intestinal inflammation, barrier function damage and oxidative stress imbalance. Lipid metabolomics analysis showed that Cd exposure severely disrupted lipid metabolic processes, especially the glycerophospholipid metabolic pathway, suggesting that lipid metabolic disorders are closely related to intestinal injury. Notably, sodium octanoate could partially reverse the lipid metabolism abnormality by regulating the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, effectively alleviating the Cd toxicity, which provides a brand-new prevention and control strategy for Cd-induced intestinal injury in the livestock industry pollution-mediated disease.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.