Maria-Veronica Teleanu, Annika Schneider, Claudia R Ball, Mathias Felix Leber, Christoph Stange, Eva Krieghoff-Henning, Katja Beck, Christoph E Heilig, Simon Kreutzfeldt, Bernhard Kuster, Daniel B Lipka, Stefan Fröhling
{"title":"Celebrating Ulrik Ringborg: Multi-Omics-Based Patient Stratification for Precision Cancer Treatment.","authors":"Maria-Veronica Teleanu, Annika Schneider, Claudia R Ball, Mathias Felix Leber, Christoph Stange, Eva Krieghoff-Henning, Katja Beck, Christoph E Heilig, Simon Kreutzfeldt, Bernhard Kuster, Daniel B Lipka, Stefan Fröhling","doi":"10.3390/biom15050693","DOIUrl":null,"url":null,"abstract":"<p><p>Precision oncology is becoming a mainstay in the standard of care for cancer patients. Recent technological advancements have significantly lowered the cost of various tumor profiling approaches, broadening the reach of molecular diagnostics and improving patient access to precision oncology. In parallel, drug development and discovery pipelines continue to evolve, driving targeted therapeutic options forward. Yet, not all patients harboring actionable molecular alterations respond to these interventions, and existing therapies do not cover the entire spectrum of potential molecular targets. In this review, we examine the current suite of omics technologies employed in clinical settings and underscore their roles in deepening our understanding of tumor biology and optimizing patient stratification for targeted treatments. We also highlight relevant precision oncology trials and share our own experiences using multi-omics data within a molecular tumor board framework. Finally, we discuss areas for future exploration aimed at propelling precision oncology to new heights.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 5","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15050693","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Precision oncology is becoming a mainstay in the standard of care for cancer patients. Recent technological advancements have significantly lowered the cost of various tumor profiling approaches, broadening the reach of molecular diagnostics and improving patient access to precision oncology. In parallel, drug development and discovery pipelines continue to evolve, driving targeted therapeutic options forward. Yet, not all patients harboring actionable molecular alterations respond to these interventions, and existing therapies do not cover the entire spectrum of potential molecular targets. In this review, we examine the current suite of omics technologies employed in clinical settings and underscore their roles in deepening our understanding of tumor biology and optimizing patient stratification for targeted treatments. We also highlight relevant precision oncology trials and share our own experiences using multi-omics data within a molecular tumor board framework. Finally, we discuss areas for future exploration aimed at propelling precision oncology to new heights.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.