Liana U Akhmetzianova, Constantin I Mikhaylenko, Dmitry A Chemeris, Valery D Khairitdinov, Assol R Sakhabutdinova, Irek M Gubaydullin, Ravil R Garafutdinov, Alexey V Chemeris
{"title":"Modeling a Standard Loop-Mediated Isothermal Amplification Reaction and Its Modification Involving Additional Inner Primers.","authors":"Liana U Akhmetzianova, Constantin I Mikhaylenko, Dmitry A Chemeris, Valery D Khairitdinov, Assol R Sakhabutdinova, Irek M Gubaydullin, Ravil R Garafutdinov, Alexey V Chemeris","doi":"10.3390/biom15050690","DOIUrl":null,"url":null,"abstract":"<p><p>Loop-mediated isothermal amplification (LAMP) was developed a quarter of a century ago, but it is still not exactly clear how this reaction proceeds. Only a few articles have focused on the kinetics of LAMP and the types of products formed. In this work, 10 types were identified and named. A basic dumbbell structure, Z6_dmb(1), consists of six zones and triggers the LAMP cycle. Due to self-priming, Z6_dmb(1) transforms into hairpin structure Z9_hp(1) and then into linearized strand Z9_li(1), carrying also strand Z6_dmb(2). Through similar transformations, it again generates strand Z6_dmb(1), completing the first LAMP cycle and starting a new one. The next stage of the exponential phase starts from two Z15_hp hairpin structures generated in the LAMP cycle, which next turn into Z15_li → Z27_hp → Z27_li → Z51_hp → and so forth. Modeling of a new type of the reaction, namely, pseudo-hemi-nested LAMP (phn-LAMP), was carried out. phn-LAMP involves three inner primers: two forward (FIP and extraFIP) and one backward inner primer, or vice versa. phn-LAMP has an advantage over LAMP involving loop or stem primers and over MIP-LAMP (multiple inner primers).</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 5","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15050690","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Loop-mediated isothermal amplification (LAMP) was developed a quarter of a century ago, but it is still not exactly clear how this reaction proceeds. Only a few articles have focused on the kinetics of LAMP and the types of products formed. In this work, 10 types were identified and named. A basic dumbbell structure, Z6_dmb(1), consists of six zones and triggers the LAMP cycle. Due to self-priming, Z6_dmb(1) transforms into hairpin structure Z9_hp(1) and then into linearized strand Z9_li(1), carrying also strand Z6_dmb(2). Through similar transformations, it again generates strand Z6_dmb(1), completing the first LAMP cycle and starting a new one. The next stage of the exponential phase starts from two Z15_hp hairpin structures generated in the LAMP cycle, which next turn into Z15_li → Z27_hp → Z27_li → Z51_hp → and so forth. Modeling of a new type of the reaction, namely, pseudo-hemi-nested LAMP (phn-LAMP), was carried out. phn-LAMP involves three inner primers: two forward (FIP and extraFIP) and one backward inner primer, or vice versa. phn-LAMP has an advantage over LAMP involving loop or stem primers and over MIP-LAMP (multiple inner primers).
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.