Ke Xie, Mingqian Yu, Jeremy Ho-Pak Liu, Qixiang Ma, Limin Zou, Gene Chi-Wai Man, Jiankun Xu, Patrick Shu-Hang Yung, Zheng Li, Michael Tim-Yun Ong
{"title":"Transforming Bone Tunnel Evaluation in Anterior Cruciate Ligament Reconstruction: Introducing a Novel Deep Learning System and the TB-Seg Dataset.","authors":"Ke Xie, Mingqian Yu, Jeremy Ho-Pak Liu, Qixiang Ma, Limin Zou, Gene Chi-Wai Man, Jiankun Xu, Patrick Shu-Hang Yung, Zheng Li, Michael Tim-Yun Ong","doi":"10.3390/bioengineering12050527","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating bone tunnels is crucial for assessing functional recovery after anterior cruciate ligament reconstruction. Conventional methods are imprecise, time-consuming, and labor-intensive. This study introduces a novel deep learning-based system for accurate bone tunnel segmentation and assessment. The system has two primary stages. Firstly, the ResNet50-Unet network is employed to capture the bone tunnel area in each slice. Subsequently, in the bone texture analysis, the open-source software 3D Slicer is leveraged to execute three-dimensional reconstruction based on the segmented outcomes from the previous stage. The ResNet50-Unet network was trained and validated using a newly developed dataset named tunnel bone segmentation (TB-Seg). The outcomes reveal commendable performance metrics, with mean intersection over union (mIoU), mean average precision (mAP), precision, and recall on the validation set reaching 76%, 85%, 88%, and 85%, respectively. To assess the robustness of our innovative bone texture system, we conducted tests on a cohort of 24 patients, successfully extracting bone volume/total volume, trabecular thickness, trabecular separation, trabecular number, and volumetric information. The system excels with substantial significance in facilitating the subsequent analysis of the intricate interplay between bone tunnel characteristics and the postoperative recovery trajectory after anterior cruciate ligament reconstruction. Furthermore, in our five randomly selected cases, clinicians utilizing our system completed the entire analytical workflow in a mere 357-429 s, representing a substantial improvement compared to the conventional duration exceeding one hour.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108582/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050527","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluating bone tunnels is crucial for assessing functional recovery after anterior cruciate ligament reconstruction. Conventional methods are imprecise, time-consuming, and labor-intensive. This study introduces a novel deep learning-based system for accurate bone tunnel segmentation and assessment. The system has two primary stages. Firstly, the ResNet50-Unet network is employed to capture the bone tunnel area in each slice. Subsequently, in the bone texture analysis, the open-source software 3D Slicer is leveraged to execute three-dimensional reconstruction based on the segmented outcomes from the previous stage. The ResNet50-Unet network was trained and validated using a newly developed dataset named tunnel bone segmentation (TB-Seg). The outcomes reveal commendable performance metrics, with mean intersection over union (mIoU), mean average precision (mAP), precision, and recall on the validation set reaching 76%, 85%, 88%, and 85%, respectively. To assess the robustness of our innovative bone texture system, we conducted tests on a cohort of 24 patients, successfully extracting bone volume/total volume, trabecular thickness, trabecular separation, trabecular number, and volumetric information. The system excels with substantial significance in facilitating the subsequent analysis of the intricate interplay between bone tunnel characteristics and the postoperative recovery trajectory after anterior cruciate ligament reconstruction. Furthermore, in our five randomly selected cases, clinicians utilizing our system completed the entire analytical workflow in a mere 357-429 s, representing a substantial improvement compared to the conventional duration exceeding one hour.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering