In Vitro and In Silico Analysis of Entrainment Characterization in Injection Jet-Assisted Fontan Circulation.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Arka Das, Ray O Prather, Anthony Damon, Michael Farias, Alain Kassab, Eduardo Divo, William DeCampli
{"title":"In Vitro and In Silico Analysis of Entrainment Characterization in Injection Jet-Assisted Fontan Circulation.","authors":"Arka Das, Ray O Prather, Anthony Damon, Michael Farias, Alain Kassab, Eduardo Divo, William DeCampli","doi":"10.3390/bioengineering12050555","DOIUrl":null,"url":null,"abstract":"<p><p>Fontan circulation is a fragile system in which imperfections at any of multiple levels may compromise the quality of life, produce secondary pathophysiology, and shorten life span. Increased inferior vena caval pressure itself may play a role in \"Fontan failure\". This study describes a mock flow loop model (MFL) designed to quantitatively estimate pulmonary flow entrainment induced by continuous and pulsed flow injections. A patient generic 3D-printed phantom model of the total cavopulmonary connection (TCPC) with average dimensions matching those of a 2-4-year-old patient was inserted in an MFL derived from a reduced lumped parameter model (LPM) representing cardiovascular circulation. The LPM comprises four 2-element Windkessel compartments (compliance and resistance), approximating the upper and lower systemic circulations and the right and left pulmonary circulations. The prescribed cardiac output is about 2.3 L/min for a body surface area of 0.675 m2. The injections originate from an external pump through a 7-9 fr catheter, following a strict protocol suggested by the clinical team, featuring a variation in injection rate (flow rate), injection volume, and injection modality (continuous or pulsed). The key measurements in this study are the flow rates sampled at the distal pulmonary arteries, as well as at the upper and lower body boundaries. These measurements were then used to calculate effective entrainment as the difference between the measured and expected flow rates, as well as jet relaxation (rise and fall time of injection). The results show that for continuous or pulsed injections, varying the total volume injected has no significant influence on the entrainment rate across all injection rates. On the other hand, for both injection modalities, increasing the injection rate results in a reduction in entrainment that is consistent across all injected volumes. This study demonstrates the effectiveness of a high-speed injection jet entraining a slow co-flow while determining the potential for fluid buildup, which could ultimately cause an increase in caval pressure. To avoid the increase in caval pressure due to mass accumulation, we added a fenestration to our proposed injection jet shunt-assisted Fontan models. It was found that for a set of well-defined parameters, the jet not only can be beneficial to the local flow, but any adverse effect can be obviated by careful tuning. These results were also cross-validated with similar in silico findings.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050555","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fontan circulation is a fragile system in which imperfections at any of multiple levels may compromise the quality of life, produce secondary pathophysiology, and shorten life span. Increased inferior vena caval pressure itself may play a role in "Fontan failure". This study describes a mock flow loop model (MFL) designed to quantitatively estimate pulmonary flow entrainment induced by continuous and pulsed flow injections. A patient generic 3D-printed phantom model of the total cavopulmonary connection (TCPC) with average dimensions matching those of a 2-4-year-old patient was inserted in an MFL derived from a reduced lumped parameter model (LPM) representing cardiovascular circulation. The LPM comprises four 2-element Windkessel compartments (compliance and resistance), approximating the upper and lower systemic circulations and the right and left pulmonary circulations. The prescribed cardiac output is about 2.3 L/min for a body surface area of 0.675 m2. The injections originate from an external pump through a 7-9 fr catheter, following a strict protocol suggested by the clinical team, featuring a variation in injection rate (flow rate), injection volume, and injection modality (continuous or pulsed). The key measurements in this study are the flow rates sampled at the distal pulmonary arteries, as well as at the upper and lower body boundaries. These measurements were then used to calculate effective entrainment as the difference between the measured and expected flow rates, as well as jet relaxation (rise and fall time of injection). The results show that for continuous or pulsed injections, varying the total volume injected has no significant influence on the entrainment rate across all injection rates. On the other hand, for both injection modalities, increasing the injection rate results in a reduction in entrainment that is consistent across all injected volumes. This study demonstrates the effectiveness of a high-speed injection jet entraining a slow co-flow while determining the potential for fluid buildup, which could ultimately cause an increase in caval pressure. To avoid the increase in caval pressure due to mass accumulation, we added a fenestration to our proposed injection jet shunt-assisted Fontan models. It was found that for a set of well-defined parameters, the jet not only can be beneficial to the local flow, but any adverse effect can be obviated by careful tuning. These results were also cross-validated with similar in silico findings.

注射喷射辅助Fontan循环中夹带特性的体外和体内分析。
Fontan循环是一个脆弱的系统,在多个层面上的任何缺陷都可能损害生活质量,产生继发性病理生理,缩短寿命。下腔静脉压力增加本身可能在“丰坦衰竭”中起作用。本研究描述了一个模拟流动环模型(MFL),旨在定量估计连续和脉冲流动注射引起的肺血流夹带。将患者通用的3d打印全腔室肺连接(TCPC)模型,其平均尺寸与2-4岁患者的模型相匹配,插入代表心血管循环的简化集总参数模型(LPM)衍生的MFL中。LPM包括4个2元Windkessel室(顺应性和阻力性),近似上下体循环和左右肺循环。体表面积为0.675 m2时,规定心输出量约为2.3 L/min。注射从外部泵通过7-9 fr导管,遵循临床团队建议的严格方案,其特点是注射速率(流速),注射量和注射方式(连续或脉冲)的变化。本研究的关键测量是在肺动脉远端以及上半身和下半身边界采样的流速。然后使用这些测量值来计算有效夹带量,即测量流量与预期流量之间的差值,以及射流松弛(注入上升和下降时间)。结果表明,对于连续注入或脉冲注入,改变注入总量对所有注入速率的夹带速率没有显著影响。另一方面,对于这两种注入方式,增加注入速率可以减少夹带,这在所有注入体积中都是一致的。该研究证明了高速喷射带低速共流的有效性,同时确定了流体积聚的可能性,这可能最终导致腔面压力的增加。为了避免由于质量积累导致的腔静脉压力增加,我们在我们提出的注射射流分流辅助Fontan模型中增加了一个开窗。研究发现,对于一组定义良好的参数,射流不仅有利于局部流动,而且任何不利影响都可以通过仔细调整来消除。这些结果也与类似的计算机研究结果交叉验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信