Arka Das, Ray O Prather, Anthony Damon, Michael Farias, Alain Kassab, Eduardo Divo, William DeCampli
{"title":"In Vitro and In Silico Analysis of Entrainment Characterization in Injection Jet-Assisted Fontan Circulation.","authors":"Arka Das, Ray O Prather, Anthony Damon, Michael Farias, Alain Kassab, Eduardo Divo, William DeCampli","doi":"10.3390/bioengineering12050555","DOIUrl":null,"url":null,"abstract":"<p><p>Fontan circulation is a fragile system in which imperfections at any of multiple levels may compromise the quality of life, produce secondary pathophysiology, and shorten life span. Increased inferior vena caval pressure itself may play a role in \"Fontan failure\". This study describes a mock flow loop model (MFL) designed to quantitatively estimate pulmonary flow entrainment induced by continuous and pulsed flow injections. A patient generic 3D-printed phantom model of the total cavopulmonary connection (TCPC) with average dimensions matching those of a 2-4-year-old patient was inserted in an MFL derived from a reduced lumped parameter model (LPM) representing cardiovascular circulation. The LPM comprises four 2-element Windkessel compartments (compliance and resistance), approximating the upper and lower systemic circulations and the right and left pulmonary circulations. The prescribed cardiac output is about 2.3 L/min for a body surface area of 0.675 m2. The injections originate from an external pump through a 7-9 fr catheter, following a strict protocol suggested by the clinical team, featuring a variation in injection rate (flow rate), injection volume, and injection modality (continuous or pulsed). The key measurements in this study are the flow rates sampled at the distal pulmonary arteries, as well as at the upper and lower body boundaries. These measurements were then used to calculate effective entrainment as the difference between the measured and expected flow rates, as well as jet relaxation (rise and fall time of injection). The results show that for continuous or pulsed injections, varying the total volume injected has no significant influence on the entrainment rate across all injection rates. On the other hand, for both injection modalities, increasing the injection rate results in a reduction in entrainment that is consistent across all injected volumes. This study demonstrates the effectiveness of a high-speed injection jet entraining a slow co-flow while determining the potential for fluid buildup, which could ultimately cause an increase in caval pressure. To avoid the increase in caval pressure due to mass accumulation, we added a fenestration to our proposed injection jet shunt-assisted Fontan models. It was found that for a set of well-defined parameters, the jet not only can be beneficial to the local flow, but any adverse effect can be obviated by careful tuning. These results were also cross-validated with similar in silico findings.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050555","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fontan circulation is a fragile system in which imperfections at any of multiple levels may compromise the quality of life, produce secondary pathophysiology, and shorten life span. Increased inferior vena caval pressure itself may play a role in "Fontan failure". This study describes a mock flow loop model (MFL) designed to quantitatively estimate pulmonary flow entrainment induced by continuous and pulsed flow injections. A patient generic 3D-printed phantom model of the total cavopulmonary connection (TCPC) with average dimensions matching those of a 2-4-year-old patient was inserted in an MFL derived from a reduced lumped parameter model (LPM) representing cardiovascular circulation. The LPM comprises four 2-element Windkessel compartments (compliance and resistance), approximating the upper and lower systemic circulations and the right and left pulmonary circulations. The prescribed cardiac output is about 2.3 L/min for a body surface area of 0.675 m2. The injections originate from an external pump through a 7-9 fr catheter, following a strict protocol suggested by the clinical team, featuring a variation in injection rate (flow rate), injection volume, and injection modality (continuous or pulsed). The key measurements in this study are the flow rates sampled at the distal pulmonary arteries, as well as at the upper and lower body boundaries. These measurements were then used to calculate effective entrainment as the difference between the measured and expected flow rates, as well as jet relaxation (rise and fall time of injection). The results show that for continuous or pulsed injections, varying the total volume injected has no significant influence on the entrainment rate across all injection rates. On the other hand, for both injection modalities, increasing the injection rate results in a reduction in entrainment that is consistent across all injected volumes. This study demonstrates the effectiveness of a high-speed injection jet entraining a slow co-flow while determining the potential for fluid buildup, which could ultimately cause an increase in caval pressure. To avoid the increase in caval pressure due to mass accumulation, we added a fenestration to our proposed injection jet shunt-assisted Fontan models. It was found that for a set of well-defined parameters, the jet not only can be beneficial to the local flow, but any adverse effect can be obviated by careful tuning. These results were also cross-validated with similar in silico findings.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering