Guirong Zhang, Pan Zhang, Yuwei Xia, Feng Shi, Yuelang Zhang, Dun Ding
{"title":"Radiomics Analysis of Whole-Kidney Non-Contrast CT for Early Identification of Chronic Kidney Disease Stages 1-3.","authors":"Guirong Zhang, Pan Zhang, Yuwei Xia, Feng Shi, Yuelang Zhang, Dun Ding","doi":"10.3390/bioengineering12050454","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The early stages of chronic kidney disease (CKD) are often undetectable on traditional non-contrast computed tomography (NCCT) images through visual assessment by radiologists. This study aims to evaluate the potential of radiomics-based quantitative features extracted from NCCT, combined with machine learning techniques, in differentiating CKD stages 1-3 from healthy controls.</p><p><strong>Methods: </strong>This retrospective study involved 1099 CKD patients (stages 1-3) and 1099 healthy participants who underwent NCCT. Bilateral kidney volumes of interest were automatically segmented using a deep learning-based segmentation approach (VB-net) on CT images. Radiomics models were constructed using the mean values of features extracted from both kidneys. Key features were selected through Relief, MRMR, and LASSO regression algorithms. A machine learning classifier was trained to differentiate CKD from healthy kidneys and compared with the radiologist assessments. Model performance was evaluated using the area under the curve (AUC) of receiver operating characteristic analysis.</p><p><strong>Results: </strong>In the training set, the AUCs for the Gaussian process (GP) classifier model and radiologist assessments were 0.849 and 0.570, respectively. In the testing set, the AUC values were 0.790 for the GP model and 0.575 for radiologist assessments.</p><p><strong>Conclusions: </strong>The NCCT-based radiomics model demonstrates significant clinical utility by enabling non-invasive, early diagnosis of CKD stages 1-3, outperforming radiologist assessments.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050454","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The early stages of chronic kidney disease (CKD) are often undetectable on traditional non-contrast computed tomography (NCCT) images through visual assessment by radiologists. This study aims to evaluate the potential of radiomics-based quantitative features extracted from NCCT, combined with machine learning techniques, in differentiating CKD stages 1-3 from healthy controls.
Methods: This retrospective study involved 1099 CKD patients (stages 1-3) and 1099 healthy participants who underwent NCCT. Bilateral kidney volumes of interest were automatically segmented using a deep learning-based segmentation approach (VB-net) on CT images. Radiomics models were constructed using the mean values of features extracted from both kidneys. Key features were selected through Relief, MRMR, and LASSO regression algorithms. A machine learning classifier was trained to differentiate CKD from healthy kidneys and compared with the radiologist assessments. Model performance was evaluated using the area under the curve (AUC) of receiver operating characteristic analysis.
Results: In the training set, the AUCs for the Gaussian process (GP) classifier model and radiologist assessments were 0.849 and 0.570, respectively. In the testing set, the AUC values were 0.790 for the GP model and 0.575 for radiologist assessments.
Conclusions: The NCCT-based radiomics model demonstrates significant clinical utility by enabling non-invasive, early diagnosis of CKD stages 1-3, outperforming radiologist assessments.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering