Identification of Key Genes and Potential Therapeutic Targets in Sepsis-Associated Acute Kidney Injury Using Transformer and Machine Learning Approaches.
Zhendong Zhai, JunZhe Peng, Wenjun Zhong, Jun Tao, Yaqi Ao, Bailin Niu, Li Zhu
{"title":"Identification of Key Genes and Potential Therapeutic Targets in Sepsis-Associated Acute Kidney Injury Using Transformer and Machine Learning Approaches.","authors":"Zhendong Zhai, JunZhe Peng, Wenjun Zhong, Jun Tao, Yaqi Ao, Bailin Niu, Li Zhu","doi":"10.3390/bioengineering12050536","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening complication of sepsis, characterized by high mortality and prolonged hospitalization. Early diagnosis and effective therapy remain difficult despite extensive investigation. To address this, we developed an AI-driven integrative framework that combines a Transformer-based deep learning model with established machine learning techniques (LASSO, SVM-RFE, Random Forest and neural networks) to uncover complex, nonlinear interactions among gene-expression biomarkers. Analysis of normalized microarray data from GEO (GSE95233 and GSE69063) identified differentially expressed genes (DEGs), and KEGG/GO enrichment via clusterProfiler revealed key pathways in immune response, protein synthesis, and antigen presentation. By integrating multiple transcriptomic cohorts, we pinpointed 617 SA-AKI-associated DEGs-21 of which overlapped between sepsis and AKI datasets. Our Transformer-based classifier ranked five genes (<i>MYL12B, RPL10</i>, <i>PTBP1</i>, <i>PPIA</i>, and <i>TOMM7</i>) as top diagnostic markers, with AUC values ranging from 0.9395 to 0.9996 (MYL12B yielding 0.9996). Drug-gene interaction mining using DGIdb (FDR < 0.05) nominated 19 candidate therapeutics for SA-AKI. Together, these findings demonstrate that melding deep learning with classical machine learning not only sharpens early SA-AKI detection but also systematically uncovers actionable drug targets, laying groundwork for precision intervention in critical care settings.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050536","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening complication of sepsis, characterized by high mortality and prolonged hospitalization. Early diagnosis and effective therapy remain difficult despite extensive investigation. To address this, we developed an AI-driven integrative framework that combines a Transformer-based deep learning model with established machine learning techniques (LASSO, SVM-RFE, Random Forest and neural networks) to uncover complex, nonlinear interactions among gene-expression biomarkers. Analysis of normalized microarray data from GEO (GSE95233 and GSE69063) identified differentially expressed genes (DEGs), and KEGG/GO enrichment via clusterProfiler revealed key pathways in immune response, protein synthesis, and antigen presentation. By integrating multiple transcriptomic cohorts, we pinpointed 617 SA-AKI-associated DEGs-21 of which overlapped between sepsis and AKI datasets. Our Transformer-based classifier ranked five genes (MYL12B, RPL10, PTBP1, PPIA, and TOMM7) as top diagnostic markers, with AUC values ranging from 0.9395 to 0.9996 (MYL12B yielding 0.9996). Drug-gene interaction mining using DGIdb (FDR < 0.05) nominated 19 candidate therapeutics for SA-AKI. Together, these findings demonstrate that melding deep learning with classical machine learning not only sharpens early SA-AKI detection but also systematically uncovers actionable drug targets, laying groundwork for precision intervention in critical care settings.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering