Clemens Hiebl, Dominik Pinner, Hannes Konegger, Franziska Steger, Dina Mohamed, Werner Fuchs
{"title":"Enhancing Gas Fermentation Efficiency via Bioaugmentation with <i>Megasphaera sueciensis</i> and <i>Clostridium carboxidivorans</i>.","authors":"Clemens Hiebl, Dominik Pinner, Hannes Konegger, Franziska Steger, Dina Mohamed, Werner Fuchs","doi":"10.3390/bioengineering12050470","DOIUrl":null,"url":null,"abstract":"<p><p>Gas fermentation aims to fix CO<sub>2</sub> into higher-value compounds, such as short or medium-chain fatty acids or alcohols. In this context, the use of mixed microbial consortia presents numerous advantages, including increased resilience and adaptability. The current study aimed to improve the performance of an enriched mixed microbial population via bioaugmentation with <i>Megasphaera sueciensis</i> and <i>Clostridium carboxidivorans</i> to improve the metabolite spectrum. The initial fermentation in trickle-bed reactors mainly yielded acetate, a low-value compound. Introducing <i>M. sueciensis</i>, which converts acetate into higher-chain fatty acids, shifted production toward butyrate (up to 3.2 g/L) and caproate (1.1 g/L). The presence of <i>M. sueciensis</i> was maintained even after several media swaps, showing its ability to establish itself as a permanent part of the microbial community. Metataxonomic analysis confirmed the successful integration of <i>M. sueciensis</i> into the mixed culture, with it becoming a dominant member of the Veillonellaceae family. In contrast, bioaugmentation with <i>C. carboxidivorans</i> was unsuccessful. Although this strain is known for producing alcohols, such as butanol and hexanol, it did not significantly enhance alcohol production, as attempts to establish it within the microbial consortium were unsuccessful. Despite these mixed results, bioaugmentation with complementary microbial capabilities remains a promising strategy to improve gas fermentation efficiency. This approach may enhance the economic feasibility of industrial-scale renewable chemical production.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109107/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050470","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gas fermentation aims to fix CO2 into higher-value compounds, such as short or medium-chain fatty acids or alcohols. In this context, the use of mixed microbial consortia presents numerous advantages, including increased resilience and adaptability. The current study aimed to improve the performance of an enriched mixed microbial population via bioaugmentation with Megasphaera sueciensis and Clostridium carboxidivorans to improve the metabolite spectrum. The initial fermentation in trickle-bed reactors mainly yielded acetate, a low-value compound. Introducing M. sueciensis, which converts acetate into higher-chain fatty acids, shifted production toward butyrate (up to 3.2 g/L) and caproate (1.1 g/L). The presence of M. sueciensis was maintained even after several media swaps, showing its ability to establish itself as a permanent part of the microbial community. Metataxonomic analysis confirmed the successful integration of M. sueciensis into the mixed culture, with it becoming a dominant member of the Veillonellaceae family. In contrast, bioaugmentation with C. carboxidivorans was unsuccessful. Although this strain is known for producing alcohols, such as butanol and hexanol, it did not significantly enhance alcohol production, as attempts to establish it within the microbial consortium were unsuccessful. Despite these mixed results, bioaugmentation with complementary microbial capabilities remains a promising strategy to improve gas fermentation efficiency. This approach may enhance the economic feasibility of industrial-scale renewable chemical production.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering