{"title":"Zirconia in Dental Implantology: A Review of the Literature with Recent Updates.","authors":"Sami Aldhuwayhi","doi":"10.3390/bioengineering12050543","DOIUrl":null,"url":null,"abstract":"<p><p>Zirconia dental implants have emerged as a transformative material in implantology, offering a biocompatible, esthetic, and durable alternative to traditional titanium implants. This comprehensive review explores the key properties of zirconia, including high fracture resistance, esthetic superiority, and low bacterial affinity. The ability of zirconia to integrate with bone through osseointegration, coupled with its resistance to plaque and inflammation, results in a product that is particularly suitable for patients with metal sensitivities or high esthetic demands. However, challenges such as brittleness and complex manufacturing processes persist. Advances in surface modification techniques and material optimization are poised to address these limitations, paving the way for broader applications. The purpose of this descriptive review was to emphasize the mechanical, antibacterial, osteointegration and survival rates of zirconia implants. This paper also summarizes findings from recent empirical studies, highlighting zirconia's clinical performance, biological responses, and future potential as a mainstream implant material.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050543","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zirconia dental implants have emerged as a transformative material in implantology, offering a biocompatible, esthetic, and durable alternative to traditional titanium implants. This comprehensive review explores the key properties of zirconia, including high fracture resistance, esthetic superiority, and low bacterial affinity. The ability of zirconia to integrate with bone through osseointegration, coupled with its resistance to plaque and inflammation, results in a product that is particularly suitable for patients with metal sensitivities or high esthetic demands. However, challenges such as brittleness and complex manufacturing processes persist. Advances in surface modification techniques and material optimization are poised to address these limitations, paving the way for broader applications. The purpose of this descriptive review was to emphasize the mechanical, antibacterial, osteointegration and survival rates of zirconia implants. This paper also summarizes findings from recent empirical studies, highlighting zirconia's clinical performance, biological responses, and future potential as a mainstream implant material.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering