Zijun Zhang, Yijun Zhao, Baoliang Zhao, Gang Yu, Peng Zhang, Qiong Wang, Xiaojun Yang
{"title":"An Arthroscopic Robotic System for Meniscoplasty with Autonomous Operation Ability.","authors":"Zijun Zhang, Yijun Zhao, Baoliang Zhao, Gang Yu, Peng Zhang, Qiong Wang, Xiaojun Yang","doi":"10.3390/bioengineering12050539","DOIUrl":null,"url":null,"abstract":"<p><p>Meniscoplasty is a common surgical procedure used to treat meniscus tears. During the operation, there are often key challenges such as a limited visual field, a narrow operating space, and difficulties in controlling the resection range. Therefore, this study developed an arthroscopic robotic system with the ability of autonomous meniscus resection to achieve better surgical outcomes. To address the issue of limited visual fields during the operation, this study used the preoperative and intraoperative meniscus point cloud images for surgical navigation and proposed a novel cross-modal point cloud registration framework. After the registration was completed, the robotic system automatically generated a resection path that could maintain the crescent shape of the remaining meniscus based on the improved Rapidly Exploring Random Tree (RRT) path-planning algorithm in this study. Meanwhile, the Remote Center of Motion (RCM) constraint was introduced during the movement of the robot to enhance safety. In this study, the mean squared error of the preoperative-intraoperative meniscus point cloud registration was only 0.1964 mm<sup>2</sup>, which meets the surgical accuracy requirements. We conducted experiments to validate the autonomous operation capabilities of the robot. The robot successfully completed motion-planning and autonomous implementation, thus demonstrating the reliability of the robotic system.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050539","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Meniscoplasty is a common surgical procedure used to treat meniscus tears. During the operation, there are often key challenges such as a limited visual field, a narrow operating space, and difficulties in controlling the resection range. Therefore, this study developed an arthroscopic robotic system with the ability of autonomous meniscus resection to achieve better surgical outcomes. To address the issue of limited visual fields during the operation, this study used the preoperative and intraoperative meniscus point cloud images for surgical navigation and proposed a novel cross-modal point cloud registration framework. After the registration was completed, the robotic system automatically generated a resection path that could maintain the crescent shape of the remaining meniscus based on the improved Rapidly Exploring Random Tree (RRT) path-planning algorithm in this study. Meanwhile, the Remote Center of Motion (RCM) constraint was introduced during the movement of the robot to enhance safety. In this study, the mean squared error of the preoperative-intraoperative meniscus point cloud registration was only 0.1964 mm2, which meets the surgical accuracy requirements. We conducted experiments to validate the autonomous operation capabilities of the robot. The robot successfully completed motion-planning and autonomous implementation, thus demonstrating the reliability of the robotic system.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering