Advancing Tissue Engineering Through a Portable Perfusion and Incubation System.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Angie Zhu, Emmett Reid, Tilak Jain, Amatullah Mir, Usmaan Siddiqi, Olivia Dunne, Narutoshi Hibino
{"title":"Advancing Tissue Engineering Through a Portable Perfusion and Incubation System.","authors":"Angie Zhu, Emmett Reid, Tilak Jain, Amatullah Mir, Usmaan Siddiqi, Olivia Dunne, Narutoshi Hibino","doi":"10.3390/bioengineering12050554","DOIUrl":null,"url":null,"abstract":"<p><p>Perfusion offers unique benefits to tissue-engineered systems, enhancing oxygen and nutrient transport, which improves tissue formation and growth. In this study, we present a novel and integrated portable perfusion system. Weighing < 10 lbs, the system can maintain continuous flow in a standard incubation environment (37 °C, 5% CO<sub>2</sub>), effectively functioning as a portable perfusion and tissue culturing system. To characterize the perfusion system's flow parameters, we measured the volumetric flow rate across a range of pressures and found that the system could achieve flow velocities between 1.69 to 4.6 μm/s, which is similar to in vivo interstitial flow. Computational fluid dynamics revealed fully developed laminar flow within the sample-containing region of the perfusion system, helping ensure even fluid and nutrient distribution. To study the system's compatibility with live tissues, bioengineered tissue patches were created and perfused. After 24 h of perfusion, no significant difference in cell viability was observed between the perfused samples and static controls, indicating no adverse effects on cell health. Perfusion also facilitated enhanced spatial organization within tissue patches, reducing the inter-spheroids distance. Furthermore, perfusion strengthened the tissue matrix and reduced the degradation rate of the hydrogel scaffold. Complemented by its ability to provide mobile perfusion and incubation, this novel integrated portable perfusion system holds promise for promoting tissue maturation and advancing tissue bioengineering studies.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050554","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perfusion offers unique benefits to tissue-engineered systems, enhancing oxygen and nutrient transport, which improves tissue formation and growth. In this study, we present a novel and integrated portable perfusion system. Weighing < 10 lbs, the system can maintain continuous flow in a standard incubation environment (37 °C, 5% CO2), effectively functioning as a portable perfusion and tissue culturing system. To characterize the perfusion system's flow parameters, we measured the volumetric flow rate across a range of pressures and found that the system could achieve flow velocities between 1.69 to 4.6 μm/s, which is similar to in vivo interstitial flow. Computational fluid dynamics revealed fully developed laminar flow within the sample-containing region of the perfusion system, helping ensure even fluid and nutrient distribution. To study the system's compatibility with live tissues, bioengineered tissue patches were created and perfused. After 24 h of perfusion, no significant difference in cell viability was observed between the perfused samples and static controls, indicating no adverse effects on cell health. Perfusion also facilitated enhanced spatial organization within tissue patches, reducing the inter-spheroids distance. Furthermore, perfusion strengthened the tissue matrix and reduced the degradation rate of the hydrogel scaffold. Complemented by its ability to provide mobile perfusion and incubation, this novel integrated portable perfusion system holds promise for promoting tissue maturation and advancing tissue bioengineering studies.

通过便携式灌注和培养系统推进组织工程。
灌注为组织工程系统提供了独特的好处,增强了氧气和营养物质的运输,从而改善了组织的形成和生长。在这项研究中,我们提出了一种新型的集成便携式灌注系统。该系统重量< 10磅,可在标准孵育环境(37°C, 5% CO2)中保持连续流动,有效地作为便携式灌注和组织培养系统。为了表征灌注系统的流动参数,我们测量了在一定压力范围内的体积流速,发现该系统可以达到1.69 ~ 4.6 μm/s的流速,这与体内的间隙流相似。计算流体动力学揭示了灌注系统中含有样品的区域内充分发展的层流,有助于确保均匀的流体和营养分布。为了研究该系统与活组织的相容性,我们制作了生物工程组织贴片并进行灌注。灌注24 h后,细胞活力与静态对照无显著差异,表明对细胞健康无不良影响。灌注也促进了组织斑块内的空间组织,减少了球体间的距离。此外,灌注增强了组织基质,降低了水凝胶支架的降解率。补充其提供移动灌注和孵育的能力,这种新型的集成便携式灌注系统有望促进组织成熟和推进组织生物工程研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信