{"title":"A Computational Study on Renal Artery Anatomy in Patients Treated with Fenestrated or Branched Endovascular Aneurysm Repair.","authors":"Yuzhu Wang, Yuna Sang, Wendong Li, Minjie Zhou, Yushun Zhao, Xiaodong He, Chao Wang, Xiaoqiang Li, Zhao Liu","doi":"10.3390/bioengineering12050482","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: Renal artery occlusion after F/B EVAR for abdominal aortic aneurysm is a serious complication that may require re-intervention, and understanding the hemodynamic mechanisms by which it occurs is essential to optimize the surgical procedure. (2) Methods: We used computational fluid dynamics (CFD) to analyze the impact of various parameters on blood flow. Theoretical vascular models were constructed based on the common dimensions and angles of aortic stents and branch arteries in clinical practice. Actual case models were constructed from CT image data of six patients treated with F/B-EVAR. Data were collected for analysis after simulation and calculation by FLUENT software. (3) Results: Theoretical model simulations showed that a larger tilt angle of the branch stent, smaller branch entry depth, and larger branch stent diameter were beneficial for blood flow. In the case models, a significant difference in the tilt angle of the renal artery stents was observed between the high- and low-flow groups, while the differences in entry depth and branch stent diameter were not significant. Occluded renal arteries had lower WSS values than patent ones. (4) Conclusions: This study offers valuable guidance for optimizing stent placement in F/B EVAR to mitigate renal artery occlusion risk.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050482","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
(1) Background: Renal artery occlusion after F/B EVAR for abdominal aortic aneurysm is a serious complication that may require re-intervention, and understanding the hemodynamic mechanisms by which it occurs is essential to optimize the surgical procedure. (2) Methods: We used computational fluid dynamics (CFD) to analyze the impact of various parameters on blood flow. Theoretical vascular models were constructed based on the common dimensions and angles of aortic stents and branch arteries in clinical practice. Actual case models were constructed from CT image data of six patients treated with F/B-EVAR. Data were collected for analysis after simulation and calculation by FLUENT software. (3) Results: Theoretical model simulations showed that a larger tilt angle of the branch stent, smaller branch entry depth, and larger branch stent diameter were beneficial for blood flow. In the case models, a significant difference in the tilt angle of the renal artery stents was observed between the high- and low-flow groups, while the differences in entry depth and branch stent diameter were not significant. Occluded renal arteries had lower WSS values than patent ones. (4) Conclusions: This study offers valuable guidance for optimizing stent placement in F/B EVAR to mitigate renal artery occlusion risk.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering