Challenges in Combining EMG, Joint Moments, and GRF from Marker-Less Video-Based Motion Capture Systems.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
H M Rehan Afzal, Borhen Louhichi, Nashmi H Alrasheedi
{"title":"Challenges in Combining EMG, Joint Moments, and GRF from Marker-Less Video-Based Motion Capture Systems.","authors":"H M Rehan Afzal, Borhen Louhichi, Nashmi H Alrasheedi","doi":"10.3390/bioengineering12050461","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of motion capture technology from marker-based to marker-less systems is a promising field, emphasizing the critical role of combining electromyography (EMG), joint moments, and ground reaction forces (GRF) in advancing biomechanical analysis. This review examines the integration of EMG, joint moments, and GRF in marker-less video-based motion capture systems, focusing on current approaches, challenges, and future research directions. This paper recognizes the significant challenges of integrating the aforementioned modalities, which include problems of acquiring and synchronizing data and the issue of validating results. Particular challenges in accuracy, reliability, calibration, and environmental influences are also pointed out, together with the issue of the standard protocols of multimodal data fusion. Using a comparative analysis of significant case studies, the review examines existing methodologies' successes and weaknesses and established best practices. New emerging themes of machine learning techniques, real-time analysis, and advancements in sensing technologies are also addressed to improve data fusion. By highlighting both the limitations and potential advancements, this review provides essential insights and recommendations for future research to optimize marker-less motion capture systems for comprehensive biomechanical assessments.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109508/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050461","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of motion capture technology from marker-based to marker-less systems is a promising field, emphasizing the critical role of combining electromyography (EMG), joint moments, and ground reaction forces (GRF) in advancing biomechanical analysis. This review examines the integration of EMG, joint moments, and GRF in marker-less video-based motion capture systems, focusing on current approaches, challenges, and future research directions. This paper recognizes the significant challenges of integrating the aforementioned modalities, which include problems of acquiring and synchronizing data and the issue of validating results. Particular challenges in accuracy, reliability, calibration, and environmental influences are also pointed out, together with the issue of the standard protocols of multimodal data fusion. Using a comparative analysis of significant case studies, the review examines existing methodologies' successes and weaknesses and established best practices. New emerging themes of machine learning techniques, real-time analysis, and advancements in sensing technologies are also addressed to improve data fusion. By highlighting both the limitations and potential advancements, this review provides essential insights and recommendations for future research to optimize marker-less motion capture systems for comprehensive biomechanical assessments.

结合无标记视频运动捕捉系统的肌电图、关节力矩和GRF的挑战。
运动捕捉技术从基于标记到无标记系统的演变是一个有前途的领域,强调结合肌电图(EMG),关节力矩和地面反作用力(GRF)在推进生物力学分析中的关键作用。本文综述了肌电图、关节力矩和GRF在基于无标记视频的运动捕捉系统中的集成,重点介绍了当前的方法、挑战和未来的研究方向。本文认识到整合上述模式的重大挑战,其中包括获取和同步数据的问题以及验证结果的问题。本文还指出了在准确性、可靠性、校准和环境影响方面的特殊挑战,以及多模态数据融合的标准协议问题。通过对重要案例研究的比较分析,本报告审查了现有方法的成功和弱点,并确立了最佳做法。机器学习技术、实时分析和传感技术的进步等新兴主题也被解决,以改善数据融合。通过强调局限性和潜在的进步,本综述为未来的研究提供了重要的见解和建议,以优化用于综合生物力学评估的无标记运动捕捉系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信