Brain Tumour Segmentation and Grading Using Local and Global Context-Aggregated Attention Network Architecture.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Ahmed Abdulhakim Al-Absi, Rui Fu, Nadhem Ebrahim, Mohammed Abdulhakim Al-Absi, Dae-Ki Kang
{"title":"Brain Tumour Segmentation and Grading Using Local and Global Context-Aggregated Attention Network Architecture.","authors":"Ahmed Abdulhakim Al-Absi, Rui Fu, Nadhem Ebrahim, Mohammed Abdulhakim Al-Absi, Dae-Ki Kang","doi":"10.3390/bioengineering12050552","DOIUrl":null,"url":null,"abstract":"<p><p>Brain tumours (BTs) are among the most dangerous and life-threatening cancers in humans of all ages, and the early detection of BTs can make a huge difference to their treatment. However, grade recognition is a challenging issue for radiologists involved in automated diagnosis and healthcare monitoring. Recent research has been motivated by the search for deep learning-based mechanisms for segmentation and grading to assist radiologists in diagnostic analysis. Segmentation refers to the identification and delineation of tumour regions in medical images, while classification classifies based on tumour characteristics, such as the size, location and enhancement pattern. The main aim of this research is to design and develop an intelligent model that can detect and grade tumours more effectively. This research develops an aggregated architecture called LGCNet, which combines a local context attention network and a global context attention network. LGCNet makes use of information extracted through the task, dimension and scale. Specifically, a global context attention network is developed for capturing multiple-scale features, and a local context attention network is designed for specific tasks. Thereafter, both networks are aggregated, and the learning network is designed to balance all the tasks by combining the loss functions of the classification and segmentation. The main advantage of LGCNet is its dedicated network for a specific task. The proposed model is evaluated by considering the BraTS2019 dataset with different metrics, such as the Dice score, sensitivity, specificity and Hausdorff score. Comparative analysis with the existing model shows marginal improvement and provides scope for further research into BT segmentation and classification. The scope of this study focuses on the BraTS2019 dataset, with future work aiming to extend the applicability of the model to different clinical and imaging environments.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050552","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Brain tumours (BTs) are among the most dangerous and life-threatening cancers in humans of all ages, and the early detection of BTs can make a huge difference to their treatment. However, grade recognition is a challenging issue for radiologists involved in automated diagnosis and healthcare monitoring. Recent research has been motivated by the search for deep learning-based mechanisms for segmentation and grading to assist radiologists in diagnostic analysis. Segmentation refers to the identification and delineation of tumour regions in medical images, while classification classifies based on tumour characteristics, such as the size, location and enhancement pattern. The main aim of this research is to design and develop an intelligent model that can detect and grade tumours more effectively. This research develops an aggregated architecture called LGCNet, which combines a local context attention network and a global context attention network. LGCNet makes use of information extracted through the task, dimension and scale. Specifically, a global context attention network is developed for capturing multiple-scale features, and a local context attention network is designed for specific tasks. Thereafter, both networks are aggregated, and the learning network is designed to balance all the tasks by combining the loss functions of the classification and segmentation. The main advantage of LGCNet is its dedicated network for a specific task. The proposed model is evaluated by considering the BraTS2019 dataset with different metrics, such as the Dice score, sensitivity, specificity and Hausdorff score. Comparative analysis with the existing model shows marginal improvement and provides scope for further research into BT segmentation and classification. The scope of this study focuses on the BraTS2019 dataset, with future work aiming to extend the applicability of the model to different clinical and imaging environments.

基于局部和全局上下文聚合的注意力网络结构的脑肿瘤分割和分级。
脑肿瘤(BTs)是所有年龄段人类中最危险、最危及生命的癌症之一,早期发现BTs可以对其治疗产生巨大影响。然而,对于参与自动化诊断和医疗监测的放射科医生来说,分级识别是一个具有挑战性的问题。最近的研究是为了寻找基于深度学习的分割和分级机制,以协助放射科医生进行诊断分析。分割是对医学图像中的肿瘤区域进行识别和圈定,分类是根据肿瘤的大小、位置、增强模式等特征进行分类。这项研究的主要目的是设计和开发一种智能模型,可以更有效地检测和分级肿瘤。本研究开发了一种称为LGCNet的聚合架构,它结合了局部上下文注意网络和全局上下文注意网络。LGCNet利用了通过任务、维度和尺度提取的信息。具体而言,开发了用于捕获多尺度特征的全局上下文注意网络,设计了用于特定任务的局部上下文注意网络。然后,对两个网络进行聚合,并结合分类和分割的损失函数设计学习网络来平衡所有的任务。LGCNet的主要优点是为特定任务提供专用网络。通过考虑具有不同指标(如Dice评分、敏感性、特异性和Hausdorff评分)的BraTS2019数据集来评估所提出的模型。与现有模型的对比分析显示出边际改进,为进一步研究BT分割和分类提供了空间。本研究的范围主要集中在BraTS2019数据集上,未来的工作旨在将该模型的适用性扩展到不同的临床和成像环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信