Carla Rodriguez-Mogeda, Ismail Koubiyr, Stefanos E Prouskas, Margarita Georgallidou, Susanne M A van der Pol, Rosalia Franco Fernandez, Yvon Galis de Graaf, Ysbrand D van der Werf, Laura E Jonkman, Geert J Schenk, Frederik Barkhof, Hanneke E Hulst, Maarten E Witte, Menno M Schoonheim, Helga E de Vries
{"title":"Thalamic atrophy in multiple sclerosis is associated with tract disconnection and altered microglia.","authors":"Carla Rodriguez-Mogeda, Ismail Koubiyr, Stefanos E Prouskas, Margarita Georgallidou, Susanne M A van der Pol, Rosalia Franco Fernandez, Yvon Galis de Graaf, Ysbrand D van der Werf, Laura E Jonkman, Geert J Schenk, Frederik Barkhof, Hanneke E Hulst, Maarten E Witte, Menno M Schoonheim, Helga E de Vries","doi":"10.1007/s00401-025-02893-4","DOIUrl":null,"url":null,"abstract":"<p><p>Thalamic atrophy already occurs in the early stages of multiple sclerosis (MS) and continues progressively throughout the disease. Demyelination is one of the main pathological hallmarks of MS and yet, thalamic demyelination does not correlate well with thalamic atrophy. By combining post-mortem magnetic resonance imaging with immunohistochemistry of thalami from 13 control and 13 MS donors, we investigated the underlying pathological contributors of thalamic atrophy and pathology. We first assessed the volumes of four thalamic nuclei groups (anterior, lateral, medial and posterior). Then, diffusion weighted imaging was used to assess the microstructural integrity of white matter tracts connecting each thalamic nuclei group. In addition, we studied myelination, inflammation, neurodegeneration and microglial activation by immunohistochemistry. We uncovered that medial and posterior thalamic nuclei were more atrophic compared to the anterior and lateral nuclei. Bilateral posterior nuclei and the right medial and anterior nuclei showed reduced fractional anisotropy in connected white matter tracks. We further show that microglial cells in the mediodorsal nuclei have an increased density and morphological complexity in MS compared to control donors. Microglia show signs of phagocytosis of pre-synapses, although we did not observe an overall synaptic loss in the thalamus of MS donors. These microglial changes within mediodorsal nuclei correlated with lower medial thalamic volume. Taken together, this study provides evidence that thalamic (subnuclear) atrophy relates tostructural thalamic network disconnection and within-thalamic microglial changes, but not thalamic demyelination. These findings could impact future treatment strategies aimed at thalamic neuroprotection.</p>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":"149 1","pages":"52"},"PeriodicalIF":9.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00401-025-02893-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thalamic atrophy already occurs in the early stages of multiple sclerosis (MS) and continues progressively throughout the disease. Demyelination is one of the main pathological hallmarks of MS and yet, thalamic demyelination does not correlate well with thalamic atrophy. By combining post-mortem magnetic resonance imaging with immunohistochemistry of thalami from 13 control and 13 MS donors, we investigated the underlying pathological contributors of thalamic atrophy and pathology. We first assessed the volumes of four thalamic nuclei groups (anterior, lateral, medial and posterior). Then, diffusion weighted imaging was used to assess the microstructural integrity of white matter tracts connecting each thalamic nuclei group. In addition, we studied myelination, inflammation, neurodegeneration and microglial activation by immunohistochemistry. We uncovered that medial and posterior thalamic nuclei were more atrophic compared to the anterior and lateral nuclei. Bilateral posterior nuclei and the right medial and anterior nuclei showed reduced fractional anisotropy in connected white matter tracks. We further show that microglial cells in the mediodorsal nuclei have an increased density and morphological complexity in MS compared to control donors. Microglia show signs of phagocytosis of pre-synapses, although we did not observe an overall synaptic loss in the thalamus of MS donors. These microglial changes within mediodorsal nuclei correlated with lower medial thalamic volume. Taken together, this study provides evidence that thalamic (subnuclear) atrophy relates tostructural thalamic network disconnection and within-thalamic microglial changes, but not thalamic demyelination. These findings could impact future treatment strategies aimed at thalamic neuroprotection.
期刊介绍:
Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.