Bryce S Wade, Todd W Pierson, Benjamin M Fitzpatrick, Evin T Carter
{"title":"Spatial Replication Is Important for Developing Landscape Genetic Inferences for a Wetland Salamander.","authors":"Bryce S Wade, Todd W Pierson, Benjamin M Fitzpatrick, Evin T Carter","doi":"10.1111/mec.17808","DOIUrl":null,"url":null,"abstract":"<p><p>Habitat fragmentation is a pressing threat to wildlife populations, and maintenance of gene flow between populations is an essential goal of conservation. Resistance surfaces have emerged as an important tool for modelling connectivity and developing management strategies to mitigate effects of habitat fragmentation. However, recent studies have noted inconsistencies in the factors most strongly associated with connectivity across different landscapes. Thus, replication of genetic-based resistance surface optimisation across landscapes may be necessary for making robust conclusions about the influence of environmental variables. Accordingly, replication represents a substantive challenge and opportunity in the field of landscape genetics. In this study, we conducted replicated landscape genetic analyses across five landscapes in Tennessee and Kentucky for a threatened wetland amphibian, the four-toed salamander (Hemidactylium scutatum). We tested multiple hypotheses of how different landscape features that could directly affect small, desiccation-intolerant amphibians (e.g., canopy cover) influenced gene flow and assessed the appropriate scale at which to model different features. We found some concordance in the landscape features that influenced gene flow (e.g., a common importance of forest cover and topography), but also some differences-potentially owing to the difference in variability of predictors across landscapes. We also found discordance in the scale of effect of different features across landscapes. Our work emphasises that flat areas of moist forest not bisected by roads may be important for H. scutatum conservation, and our replicated design allows us to identify relationships that would have been missed if only using one study site.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17808"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17808","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Habitat fragmentation is a pressing threat to wildlife populations, and maintenance of gene flow between populations is an essential goal of conservation. Resistance surfaces have emerged as an important tool for modelling connectivity and developing management strategies to mitigate effects of habitat fragmentation. However, recent studies have noted inconsistencies in the factors most strongly associated with connectivity across different landscapes. Thus, replication of genetic-based resistance surface optimisation across landscapes may be necessary for making robust conclusions about the influence of environmental variables. Accordingly, replication represents a substantive challenge and opportunity in the field of landscape genetics. In this study, we conducted replicated landscape genetic analyses across five landscapes in Tennessee and Kentucky for a threatened wetland amphibian, the four-toed salamander (Hemidactylium scutatum). We tested multiple hypotheses of how different landscape features that could directly affect small, desiccation-intolerant amphibians (e.g., canopy cover) influenced gene flow and assessed the appropriate scale at which to model different features. We found some concordance in the landscape features that influenced gene flow (e.g., a common importance of forest cover and topography), but also some differences-potentially owing to the difference in variability of predictors across landscapes. We also found discordance in the scale of effect of different features across landscapes. Our work emphasises that flat areas of moist forest not bisected by roads may be important for H. scutatum conservation, and our replicated design allows us to identify relationships that would have been missed if only using one study site.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms