TaSED interacts with TaSPA synergistically regulating SDS-sedimentation volume in bread wheat.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shanshan Zhai, Runqi Zhang, Xinhao Meng, Guoyu Liu, Jiazheng Yu, Huanwen Xu, Hongyao Lou, Shidian Wen, Mingshan You, Chaojie Xie, Jie Liu, Zhongfu Ni, Qixin Sun, Baoyun Li
{"title":"TaSED interacts with TaSPA synergistically regulating SDS-sedimentation volume in bread wheat.","authors":"Shanshan Zhai, Runqi Zhang, Xinhao Meng, Guoyu Liu, Jiazheng Yu, Huanwen Xu, Hongyao Lou, Shidian Wen, Mingshan You, Chaojie Xie, Jie Liu, Zhongfu Ni, Qixin Sun, Baoyun Li","doi":"10.1111/jipb.13935","DOIUrl":null,"url":null,"abstract":"<p><p>The SDS-sedimentation volume (SSV) is a critical indicator for assessing wheat gluten quality and is widely used when evaluating wheat processing quality. However, the molecular mechanisms regulating SSV remain poorly understood. In this study, we performed an analysis of quantitative trait loci (QTLs) for SSV using a recombinant inbred line (RIL) population derived from a cross between TAA10 and XX329, and identified four environmentally stable QTLs located on chromosomes 1D, 2D, 4D, and 6D. Among them, the effects of Qssv.cau-1D and Qssv.cau-6D were likely to be explained by genome variations at the Glu-D1 and Gli-D2 loci. We fine mapped Qssv.cau-2D to the candidate causal gene TaSED, encoding a nucleolar protein. Gene-edited TaSED knockout mutants (tased) had a lower SSV, while TaSED overexpression lines showed a higher SSV. We demonstrated that TaSED interacted with the transcription factor TaSPA to enhance its transcriptional activation activity of glutenin and gliadin, whose expression was downregulated in tased and upregulated in TaSED-OE plants, with corresponding differences in glutenin and gliadin content compared with the wild-type. A molecular marker sedTX was further developed based on a nonsynonymous mutation of the parents in TaSED that could be used to identify haplotypes with high SSV effectively. Our findings elucidate a molecular mechanism governing SSV and reveal valuable variants with promising applications for improving wheat quality.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13935","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The SDS-sedimentation volume (SSV) is a critical indicator for assessing wheat gluten quality and is widely used when evaluating wheat processing quality. However, the molecular mechanisms regulating SSV remain poorly understood. In this study, we performed an analysis of quantitative trait loci (QTLs) for SSV using a recombinant inbred line (RIL) population derived from a cross between TAA10 and XX329, and identified four environmentally stable QTLs located on chromosomes 1D, 2D, 4D, and 6D. Among them, the effects of Qssv.cau-1D and Qssv.cau-6D were likely to be explained by genome variations at the Glu-D1 and Gli-D2 loci. We fine mapped Qssv.cau-2D to the candidate causal gene TaSED, encoding a nucleolar protein. Gene-edited TaSED knockout mutants (tased) had a lower SSV, while TaSED overexpression lines showed a higher SSV. We demonstrated that TaSED interacted with the transcription factor TaSPA to enhance its transcriptional activation activity of glutenin and gliadin, whose expression was downregulated in tased and upregulated in TaSED-OE plants, with corresponding differences in glutenin and gliadin content compared with the wild-type. A molecular marker sedTX was further developed based on a nonsynonymous mutation of the parents in TaSED that could be used to identify haplotypes with high SSV effectively. Our findings elucidate a molecular mechanism governing SSV and reveal valuable variants with promising applications for improving wheat quality.

tase与TaSPA相互作用,协同调节面包小麦sds -沉淀体积。
sds -沉降体积(SSV)是评价小麦面筋品质的重要指标,在小麦加工品质评价中得到广泛应用。然而,调控SSV的分子机制仍然知之甚少。在本研究中,我们利用TAA10和XX329杂交的重组自交系(RIL)群体对SSV的数量性状位点(qtl)进行了分析,发现了4个环境稳定的qtl,分别位于染色体1D、2D、4D和6D上。其中,Qssv的效果。cac - 1d和Qssv。cac - 6d可能是由Glu-D1和Gli-D2基因座的基因组变异来解释的。我们很好地映射了Qssv。ca2 - 2d与候选致病基因TaSED结合,编码核仁蛋白。基因编辑的tase敲除突变体(tase)的SSV较低,而tase过表达系的SSV较高。我们发现tase与转录因子TaSPA相互作用,增强了其对谷蛋白和麦胶蛋白的转录激活活性,谷蛋白和麦胶蛋白在tase中表达下调,在tase - oe植物中表达上调,且谷蛋白和麦胶蛋白含量与野生型相比存在相应差异。基于tase亲本的非同义突变,进一步开发了sedTX分子标记,可有效识别高SSV单倍型。我们的发现阐明了控制SSV的分子机制,并揭示了有价值的变异,在改善小麦品质方面有前景的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信