Quantum Geometric Engineering of Dual Hall Effects in 2D Antiferromagnetic Bilayers via Interlayer Magnetic Coupling

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhenning Sun, Tao Wang, Hao Jin, Xinru Li, Yadong Wei, Jian Wang
{"title":"Quantum Geometric Engineering of Dual Hall Effects in 2D Antiferromagnetic Bilayers via Interlayer Magnetic Coupling","authors":"Zhenning Sun,&nbsp;Tao Wang,&nbsp;Hao Jin,&nbsp;Xinru Li,&nbsp;Yadong Wei,&nbsp;Jian Wang","doi":"10.1002/advs.202505860","DOIUrl":null,"url":null,"abstract":"<p>The interplay between quantum geometry and magnetic order offers a novel strategy for designing next-generation nanodevices. Here, it is demonstrated that interlayer magnetic coupling in two-dimensional (2D) CoPSe<sub>3</sub> bilayers enables precise control over quantum geometric mechanisms, unlocking dual intrinsic Hall effects. The first-principles calculations reveal that the altermagnetic (AM) phase exhibits a giant anisotropic anomalous Hall effect (AHE) (σ<sub><i>xy</i></sub> ≈46 S cm<sup>−1</sup>) driven by Berry curvature localized at generic <i>k</i>-points, while the <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mi>T</mi>\n </mrow>\n <annotation>$\\mathcal{P}\\mathcal{T}$</annotation>\n </semantics></math>-symmetric antiferromagnetic (AFM) phase hosts an intrinsic second-order nonlinear anomalous Hall effect (NAHE) (χ<sub><i>xyy</i></sub> ≈ 160 µS V<sup>−1</sup>) originating from quantum metric accumulation at high-symmetry <i>k</i>-points. By tuning interlayer magnetic couplings, reversible switching between these phases is achieved, leveraging their distinct band structures and symmetry constraints. The Néel-vector-dependent AHE in the AM phase and the symmetry-protected NAHE in the AFM phase highlight quantum geometry as a versatile tool for manipulating transport properties. This work establishes 2D antiferromagnets as a promising platform for multifunctional device architectures, bridging linear and nonlinear magnetoelectric responses through tailored quantum geometric engineering.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 31","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202505860","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202505860","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interplay between quantum geometry and magnetic order offers a novel strategy for designing next-generation nanodevices. Here, it is demonstrated that interlayer magnetic coupling in two-dimensional (2D) CoPSe3 bilayers enables precise control over quantum geometric mechanisms, unlocking dual intrinsic Hall effects. The first-principles calculations reveal that the altermagnetic (AM) phase exhibits a giant anisotropic anomalous Hall effect (AHE) (σxy ≈46 S cm−1) driven by Berry curvature localized at generic k-points, while the P T $\mathcal{P}\mathcal{T}$ -symmetric antiferromagnetic (AFM) phase hosts an intrinsic second-order nonlinear anomalous Hall effect (NAHE) (χxyy ≈ 160 µS V−1) originating from quantum metric accumulation at high-symmetry k-points. By tuning interlayer magnetic couplings, reversible switching between these phases is achieved, leveraging their distinct band structures and symmetry constraints. The Néel-vector-dependent AHE in the AM phase and the symmetry-protected NAHE in the AFM phase highlight quantum geometry as a versatile tool for manipulating transport properties. This work establishes 2D antiferromagnets as a promising platform for multifunctional device architectures, bridging linear and nonlinear magnetoelectric responses through tailored quantum geometric engineering.

Abstract Image

通过层间磁耦合的二维反铁磁双层中双霍尔效应的量子几何工程。
量子几何和磁序之间的相互作用为设计下一代纳米器件提供了一种新的策略。本文证明了二维(2D) CoPSe3双层中的层间磁耦合能够精确控制量子几何机制,解锁双本征霍尔效应。第一性原理计算表明,互磁(AM)相在一般k点处表现出由Berry曲率驱动的巨大各向异性反常霍尔效应(AHE) (σxy≈46 S cm-1),而P T $\mathcal{P}\mathcal{T}$对称反铁磁(AFM)相在高对称k点处表现出由量子累积引起的本征二阶非线性反常霍尔效应(NAHE) (χxyy≈160µS V-1)。通过调整层间磁耦合,利用其独特的能带结构和对称约束,实现了这些相位之间的可逆切换。在调幅相中与nsamel矢量相关的NAHE和在AFM相中受对称保护的NAHE突出了量子几何作为操纵输运性质的通用工具。这项工作建立了二维反铁磁体作为多功能器件架构的有前途的平台,通过定制的量子几何工程桥接线性和非线性磁电响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信