Immunotyping the Tumor Microenvironment Reveals Molecular Heterogeneity for Personalized Immunotherapy in Cancer

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dongqiang Zeng, Yunfang Yu, Wenjun Qiu, Qiyun Ou, Qianqian Mao, Luyang Jiang, Jianhua Wu, Jiani Wu, Huiyan Luo, Peng Luo, Wenchao Gu, Na Huang, Siting Zheng, Shaowei Li, Yonghong Lai, Xiatong Huang, Yiran Fang, Qiongzhi Zhao, Rui Zhou, Huiying Sun, Wei Zhang, Jianping Bin, Yulin Liao, Masami Yamamoto, Tetsuya Tsukamoto, Sachiyo Nomura, Min Shi, Wangjun Liao
{"title":"Immunotyping the Tumor Microenvironment Reveals Molecular Heterogeneity for Personalized Immunotherapy in Cancer","authors":"Dongqiang Zeng,&nbsp;Yunfang Yu,&nbsp;Wenjun Qiu,&nbsp;Qiyun Ou,&nbsp;Qianqian Mao,&nbsp;Luyang Jiang,&nbsp;Jianhua Wu,&nbsp;Jiani Wu,&nbsp;Huiyan Luo,&nbsp;Peng Luo,&nbsp;Wenchao Gu,&nbsp;Na Huang,&nbsp;Siting Zheng,&nbsp;Shaowei Li,&nbsp;Yonghong Lai,&nbsp;Xiatong Huang,&nbsp;Yiran Fang,&nbsp;Qiongzhi Zhao,&nbsp;Rui Zhou,&nbsp;Huiying Sun,&nbsp;Wei Zhang,&nbsp;Jianping Bin,&nbsp;Yulin Liao,&nbsp;Masami Yamamoto,&nbsp;Tetsuya Tsukamoto,&nbsp;Sachiyo Nomura,&nbsp;Min Shi,&nbsp;Wangjun Liao","doi":"10.1002/advs.202417593","DOIUrl":null,"url":null,"abstract":"<p>The tumor microenvironment (TME) significantly influences cancer prognosis and therapeutic outcomes, yet its composition remains highly heterogeneous, and currently, no highly accessible, high-throughput method exists to define it. To address this complexity, the TMEclassifier, a machine-learning tool that classifies cancers into three distinct subtypes: immune Exclusive (IE), immune Suppressive (IS), and immune Activated (IA), is developed. Bulk RNA sequencing categorizes patient samples by TME subtype, and in vivo mouse model validates TME subtype differences and differential responses to immunotherapy. The IE subtype is marked by high stromal cell abundance, associated with aggressive cancer phenotypes. The IS subtype features myeloid-derived suppressor cell infiltration, intensifying immunosuppression. In contrast, the IA subtype, often linked to EBV/MSI, exhibits robust T-cell presence and improved immunotherapy response. Single-cell RNA sequencing is applied to explore TME cellular heterogeneity, and in vivo experiments demonstrate that targeting IL-1 counteracts immunosuppression of IS subtype and markedly improves its responsiveness to immunotherapy. TMEclassifier predictions are validated in this prospective gastric cancer cohort (TIMES-001) and other diverse cohorts. This classifier could effectively stratify patients, guiding personalized immunotherapeutic strategies to enhance precision and overcome resistance.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 25","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202417593","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202417593","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The tumor microenvironment (TME) significantly influences cancer prognosis and therapeutic outcomes, yet its composition remains highly heterogeneous, and currently, no highly accessible, high-throughput method exists to define it. To address this complexity, the TMEclassifier, a machine-learning tool that classifies cancers into three distinct subtypes: immune Exclusive (IE), immune Suppressive (IS), and immune Activated (IA), is developed. Bulk RNA sequencing categorizes patient samples by TME subtype, and in vivo mouse model validates TME subtype differences and differential responses to immunotherapy. The IE subtype is marked by high stromal cell abundance, associated with aggressive cancer phenotypes. The IS subtype features myeloid-derived suppressor cell infiltration, intensifying immunosuppression. In contrast, the IA subtype, often linked to EBV/MSI, exhibits robust T-cell presence and improved immunotherapy response. Single-cell RNA sequencing is applied to explore TME cellular heterogeneity, and in vivo experiments demonstrate that targeting IL-1 counteracts immunosuppression of IS subtype and markedly improves its responsiveness to immunotherapy. TMEclassifier predictions are validated in this prospective gastric cancer cohort (TIMES-001) and other diverse cohorts. This classifier could effectively stratify patients, guiding personalized immunotherapeutic strategies to enhance precision and overcome resistance.

Abstract Image

肿瘤微环境的免疫分型揭示了癌症个性化免疫治疗的分子异质性。
肿瘤微环境(tumor microenvironment, TME)显著影响癌症预后和治疗结果,但其组成仍然高度异质性,目前还没有高度可及、高通量的方法来定义它。为了解决这种复杂性,开发了TMEclassifier,这是一种机器学习工具,可将癌症分为三种不同的亚型:免疫排他(IE),免疫抑制性(IS)和免疫激活(IA)。大量RNA测序根据TME亚型对患者样本进行分类,体内小鼠模型验证了TME亚型差异和对免疫治疗的差异反应。IE亚型的特点是基质细胞丰度高,与侵袭性癌症表型相关。IS亚型的特点是骨髓源性抑制细胞浸润,增强免疫抑制。相比之下,通常与EBV/MSI相关的IA亚型表现出强大的t细胞存在和改善的免疫治疗反应。利用单细胞RNA测序技术探索TME细胞异质性,体内实验表明,靶向IL-1可抵消is亚型的免疫抑制,显著提高其对免疫治疗的反应性。TMEclassifier预测在该前瞻性胃癌队列(TIMES-001)和其他不同队列中得到验证。该分类器可以有效地对患者进行分层,指导个性化免疫治疗策略,提高精准度,克服耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信