{"title":"Artificial amidase with modifiable active sites and designable substrate selectivity for aryl amide hydrolysis.","authors":"Mohan Lakavathu, Yan Zhao","doi":"10.1039/d5cc01868d","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrolases are used by cells to process key biomolecules including peptides and esters. Previous synthetic mimics of proteases generally only hydrolyze highly active ester derivatives. We report a synthetic catalyst with an acid/base dyad in its active site that hydrolyzes aryl amides under near physiological conditions. The aspartic protease mimic achieves substrate selectivity by its imprinted active site, which is tunable through different template molecules used during molecular imprinting. It can be designed to maintain or override the intrinsic activities of aryl amides in a predictable manner.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cc01868d","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrolases are used by cells to process key biomolecules including peptides and esters. Previous synthetic mimics of proteases generally only hydrolyze highly active ester derivatives. We report a synthetic catalyst with an acid/base dyad in its active site that hydrolyzes aryl amides under near physiological conditions. The aspartic protease mimic achieves substrate selectivity by its imprinted active site, which is tunable through different template molecules used during molecular imprinting. It can be designed to maintain or override the intrinsic activities of aryl amides in a predictable manner.
期刊介绍:
ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.