Nova Mondry Cohen, Chiranth Krishna Kumar, Haruta Iitoyo, Alexander W Rookyard, Joel A Cain, Lok Man, Melanie Y White, Ashleigh L Dale, Stuart J Cordwell
{"title":"Exploring the Targets of Reactive Oxygen Species and Defense against Oxidative Stress in <i>Campylobacter jejuni</i> Using a Multiomics Approach.","authors":"Nova Mondry Cohen, Chiranth Krishna Kumar, Haruta Iitoyo, Alexander W Rookyard, Joel A Cain, Lok Man, Melanie Y White, Ashleigh L Dale, Stuart J Cordwell","doi":"10.1021/acs.jproteome.5c00182","DOIUrl":null,"url":null,"abstract":"<p><p><i>Campylobacter jejuni</i> is a major cause of human gastroenteritis. Pathogenesis depends on survival in reactive oxygen species (ROS) that are produced endogenously and by host phagocytes and microbiota. Label-based proteomics by LC-MS/MS quantified 1347 proteins (83.0% of the predicted proteome) in response to hydrogen peroxide (10 μM/0.5 mM) and superoxide-inducing paraquat (PQ; 2 μM/10 μM). Antioxidants including catalase (KatA) and alkylhydroperoxide reductase (AhpC), were induced, consistent with the oxidative stress response. Changes to nutrient transporters (SdaC/PutP/LctP) correlated with the intracellular abundance of substrates (serine/proline/lactate). ROS significantly elevated the abundance of the outer membrane protein Cj1170c, and Δ<i>cj</i><i>1170c</i> bacteria were compromised for survival in H<sub>2</sub>O<sub>2</sub> and under osmotic stress. PQ induced intracellular accumulation of threonine and homoserine, while Δ<i>cj1170c</i> bacteria were depleted of these metabolites. ROS targets cysteine thiols that can be irreversibly modified to sulfinic and sulfonic (SO<sub>2</sub>H/SO<sub>3</sub>H) acids. We identified 1334 Cys-SO<sub>2</sub>H/SO<sub>3</sub>H-modified peptides (867 sites in 495 proteins) using SCX negative and HILIC positive selection coupled to LC-MS/MS. Many sites were modified without exogenous H<sub>2</sub>O<sub>2</sub>, suggesting that <i>C. jejuni</i> maintains an oxidative intracellular environment potentially related to microaerophilicity. Fe-S clusters were the primary targets of ROS. ROS trigger molecular remodeling associated with in-host growth, while overoxidizable Cys sites provide targets for redox-based antimicrobials.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.5c00182","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Campylobacter jejuni is a major cause of human gastroenteritis. Pathogenesis depends on survival in reactive oxygen species (ROS) that are produced endogenously and by host phagocytes and microbiota. Label-based proteomics by LC-MS/MS quantified 1347 proteins (83.0% of the predicted proteome) in response to hydrogen peroxide (10 μM/0.5 mM) and superoxide-inducing paraquat (PQ; 2 μM/10 μM). Antioxidants including catalase (KatA) and alkylhydroperoxide reductase (AhpC), were induced, consistent with the oxidative stress response. Changes to nutrient transporters (SdaC/PutP/LctP) correlated with the intracellular abundance of substrates (serine/proline/lactate). ROS significantly elevated the abundance of the outer membrane protein Cj1170c, and Δcj1170c bacteria were compromised for survival in H2O2 and under osmotic stress. PQ induced intracellular accumulation of threonine and homoserine, while Δcj1170c bacteria were depleted of these metabolites. ROS targets cysteine thiols that can be irreversibly modified to sulfinic and sulfonic (SO2H/SO3H) acids. We identified 1334 Cys-SO2H/SO3H-modified peptides (867 sites in 495 proteins) using SCX negative and HILIC positive selection coupled to LC-MS/MS. Many sites were modified without exogenous H2O2, suggesting that C. jejuni maintains an oxidative intracellular environment potentially related to microaerophilicity. Fe-S clusters were the primary targets of ROS. ROS trigger molecular remodeling associated with in-host growth, while overoxidizable Cys sites provide targets for redox-based antimicrobials.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".