Yuewen Zhai, Fan Gao, Shihao Shi, Qifeng Zhong, Jinnan Zhang, Ji Fang, Fang He, Yanqin Zhang, Yu Li, Fei Liu, Bing Xue, Yueqing Gu, Siwen Li
{"title":"Noninvasive Optogenetics Realized by iPSC-Derived Tentacled Carrier in Alzheimer's Disease Treatment.","authors":"Yuewen Zhai, Fan Gao, Shihao Shi, Qifeng Zhong, Jinnan Zhang, Ji Fang, Fang He, Yanqin Zhang, Yu Li, Fei Liu, Bing Xue, Yueqing Gu, Siwen Li","doi":"10.1002/adma.202419768","DOIUrl":null,"url":null,"abstract":"<p><p>Neural-activated optogenetics technique contributing to the \"restart\" of degenerative neurons offers hope for the treatment of several neurodegenerative diseases. However, the limitations of persistent invasiveness and inadequate repair of the pathological environment strongly hinder its further application. Here, a concept of differentiating stem cells is proposed to produce functional materials to enhance the therapeutic applicability of optogenetics. Induced pluripotent stem cells (iPSCs) are differentiated to generate the \"tentacled\" stem cells TenSCs. Their \"tentacled\" vesicles TenSCev, upon inheriting the biological functions of the parent cell, will possess both neural targeting capacity and pathological environment repair ability. Hence, TenSCev are utilized as functional carrier to deliver optogenetics elements for completely non-traumatic and controllable neuron activation, while also facilitating the comprehensive restoration of the pathological environment, thus effectively halted disease progression and significantly improved cognitive function in Alzheimer's disease or aged mice. Further, the concept of generating specialized biomaterials from differentiated stem cells as functional carriers holds the potential to broaden the applicability of various neuroregulatory techniques in the treatment of neurological disorders.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2419768"},"PeriodicalIF":27.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419768","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neural-activated optogenetics technique contributing to the "restart" of degenerative neurons offers hope for the treatment of several neurodegenerative diseases. However, the limitations of persistent invasiveness and inadequate repair of the pathological environment strongly hinder its further application. Here, a concept of differentiating stem cells is proposed to produce functional materials to enhance the therapeutic applicability of optogenetics. Induced pluripotent stem cells (iPSCs) are differentiated to generate the "tentacled" stem cells TenSCs. Their "tentacled" vesicles TenSCev, upon inheriting the biological functions of the parent cell, will possess both neural targeting capacity and pathological environment repair ability. Hence, TenSCev are utilized as functional carrier to deliver optogenetics elements for completely non-traumatic and controllable neuron activation, while also facilitating the comprehensive restoration of the pathological environment, thus effectively halted disease progression and significantly improved cognitive function in Alzheimer's disease or aged mice. Further, the concept of generating specialized biomaterials from differentiated stem cells as functional carriers holds the potential to broaden the applicability of various neuroregulatory techniques in the treatment of neurological disorders.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.