Fatemeh Ghorbani, Andry Rakotonirainy, Mohammed Elhenawy
{"title":"The effect of familiarity and repetition on neural activity during visual face perception","authors":"Fatemeh Ghorbani, Andry Rakotonirainy, Mohammed Elhenawy","doi":"10.1016/j.bbe.2025.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>This study examined the temporal dynamics of face perception using event-related potentials (ERPs) to investigate how familiarity and repetition influence early and late stages of face processing. A generalised linear mixed-effects (GLME) model was employed to assess the amplitude and latency of the P100, N170, and N250 ERP components across three stimulus types (famous, non-famous, and scrambled faces), three repetition conditions (first presentation, immediate repeat, delayed repeat), and two brain hemispheres. The P100 component, associated with early visual processing, showed no significant modulation by stimulus familiarity or repetition, suggesting stable perceptual encoding across conditions. In contrast, N170 and N250 amplitudes were significantly affected by repetition, indicating enhanced neural responses during repeated exposure, particularly in the right hemisphere. Latency analyses revealed that N250 component was also sensitive to repetition timing, with delayed repetitions eliciting shorter response time, implying shifts in processing efficiency and memory engagement. Multivariate time-series decoding further demonstrated higher discriminability between scrambled and familiar faces compared to non-famous faces, particularly during first and delayed repeat conditions. Notably, decoding performance declined for immediate repeats, suggesting reduced neural differentiation during short-interval repetition. These findings provide new insights into how repetition and familiarity modulate the neural underpinnings of face perception, emphasizing the role of temporal dynamics and hemispheric specialization in face processing.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"45 3","pages":"Pages 399-413"},"PeriodicalIF":6.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521625000336","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study examined the temporal dynamics of face perception using event-related potentials (ERPs) to investigate how familiarity and repetition influence early and late stages of face processing. A generalised linear mixed-effects (GLME) model was employed to assess the amplitude and latency of the P100, N170, and N250 ERP components across three stimulus types (famous, non-famous, and scrambled faces), three repetition conditions (first presentation, immediate repeat, delayed repeat), and two brain hemispheres. The P100 component, associated with early visual processing, showed no significant modulation by stimulus familiarity or repetition, suggesting stable perceptual encoding across conditions. In contrast, N170 and N250 amplitudes were significantly affected by repetition, indicating enhanced neural responses during repeated exposure, particularly in the right hemisphere. Latency analyses revealed that N250 component was also sensitive to repetition timing, with delayed repetitions eliciting shorter response time, implying shifts in processing efficiency and memory engagement. Multivariate time-series decoding further demonstrated higher discriminability between scrambled and familiar faces compared to non-famous faces, particularly during first and delayed repeat conditions. Notably, decoding performance declined for immediate repeats, suggesting reduced neural differentiation during short-interval repetition. These findings provide new insights into how repetition and familiarity modulate the neural underpinnings of face perception, emphasizing the role of temporal dynamics and hemispheric specialization in face processing.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.