{"title":"NeFT-Net: N-window extended frequency transformer for rhythmic motion prediction","authors":"Adeyemi Ademola , David Sinclair , Babis Koniaris , Samantha Hannah , Kenny Mitchell","doi":"10.1016/j.cag.2025.104244","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in prediction of human motion sequences are critical for enabling online virtual reality (VR) users to dance and move in ways that accurately mirror real-world actions, delivering a more immersive and connected experience. However, latency in networked motion tracking remains a significant challenge, disrupting engagement and necessitating predictive solutions to achieve real-time synchronization of remote motions. To address this issue, we propose a novel approach leveraging a synthetically generated dataset based on supervised foot anchor placement timings for rhythmic motions, ensuring periodicity and reducing prediction errors. Our model integrates a discrete cosine transform (DCT) to encode motion, refine high-frequency components, and smooth motion sequences, mitigating jittery artifacts. Additionally, we introduce a feed-forward attention mechanism designed to learn from N-window pairs of 3D key-point pose histories for precise future motion prediction. Quantitative and qualitative evaluations on the Human3.6M dataset highlight significant improvements in mean per joint position error (MPJPE) metrics, demonstrating the superiority of our technique over state-of-the-art approaches. We further introduce novel result pose visualizations through the use of generative AI methods.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"129 ","pages":"Article 104244"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325000858","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in prediction of human motion sequences are critical for enabling online virtual reality (VR) users to dance and move in ways that accurately mirror real-world actions, delivering a more immersive and connected experience. However, latency in networked motion tracking remains a significant challenge, disrupting engagement and necessitating predictive solutions to achieve real-time synchronization of remote motions. To address this issue, we propose a novel approach leveraging a synthetically generated dataset based on supervised foot anchor placement timings for rhythmic motions, ensuring periodicity and reducing prediction errors. Our model integrates a discrete cosine transform (DCT) to encode motion, refine high-frequency components, and smooth motion sequences, mitigating jittery artifacts. Additionally, we introduce a feed-forward attention mechanism designed to learn from N-window pairs of 3D key-point pose histories for precise future motion prediction. Quantitative and qualitative evaluations on the Human3.6M dataset highlight significant improvements in mean per joint position error (MPJPE) metrics, demonstrating the superiority of our technique over state-of-the-art approaches. We further introduce novel result pose visualizations through the use of generative AI methods.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.